1、嫦娥五号探测器(以下简称探测器)经过约112小时奔月飞行,在距月面约400km环月圆形轨道成功实施3000N发动机点火,约17分钟后,发动机正常关机。根据实时遥测数据监视判断,嫦娥五号探测器近月制动正常,从近圆形轨道Ⅰ变为近月点高度约200km的椭圆轨道Ⅱ,如图所示。已知月球的直径约为地球的,质量约为地球的
,请通过估算判断以下说法正确的是( )
A.月球表面的重力加速度与地球表面的重力加速度之比为4∶81
B.月球的第一宇宙速度与地球的第一宇宙速度之比为2∶9
C.“嫦娥五号”进入环月椭圆轨道Ⅱ后关闭发动机,探测器从Q点运行到P点过程中机械能增加
D.关闭发动机后的“嫦娥五号”不论在轨道Ⅰ还是轨道Ⅱ运行,“嫦娥五号”探测器在Q点的速度大小都相同
2、如图所示,平行板电容器与电源相接,充电后切断电源,然后将电介质插入电容器极板间,则两板间的电势差U及板间场强E的变化情况为( )
A.U变大,E变大
B.U变小,E变小
C.U不变,E不变
D.U变小,E不变
3、质子疗法进行治疗,该疗法用一定能量的质子束照射肿瘤杀死癌细胞.现用一直线加速器来加速质子,使其从静止开始被加速到1.0×107m/s.已知加速电场的场强为1.3×105N/C,质子的质量为1.67×10-27kg,电荷量为1.6×10-19C,则下列说法正确的是
A.加速过程中质子电势能增加
B.质子所受到的电场力约为2×10-15N
C.质子加速需要的时间约为8×10-6s
D.加速器加速的直线长度约为4m
4、如图,绝缘光滑圆环竖直放置,a、b、c为三个套在半径为R圆环上可自由滑动的空心带电小球,已知小球c位于圆环最高点(未画出),ac连线与竖直方向成60°角,bc连线与竖直方向成30°角,小球a的电量为(q>0),质量为m,三个小球均处于静止状态。下列说法正确的是( )
A.a、b、c小球带同种电荷
B.a、b小球带异种电荷,b、c小球带同种电荷
C.a、b小球电量之比为
D.小球c电量数值为
5、某款手机具备无线充电功能,方便了人们的使用。无线充电技术主要应用的知识是( )
A.电磁感应
B.电流的热效应
C.电流的磁效应
D.安培分子电流假说
6、万有引力定律表达式为( )
A.
B.
C.
D.
7、如图所示,O是带电量相等的两个正点电荷连线的中点,a、b是两电荷连线中垂线上位于O点上方的任意两点,下列关于a、b两点电场强度和电势的说法中,一定正确的是( )
A.Ea>Eb
B.Ea<Eb
C.φa>φb
D.φa<φb
8、如图所示,小磁针静止在导线环中。当导线环通过沿逆时针方向的电流时,忽略地磁场影响,小磁针最后静止时N极所指的方向( )
A.水平向右
B.水平向左
C.垂直纸面向里
D.垂直纸面向外
9、某地有一风力发电机,它的叶片转动时可形成半径为20m的圆面。某时间内该地区的风向恰好跟叶片转动的圆面垂直,已知空气的密度为1.2kg/m3,假如这个风力发电机能将此圆内空气动能的10%转化为电能,若该风力发电机的发电功率约为1.63×104W,则该地区的风速约为( )
A.10m/s
B.8m/s
C.6m/s
D.4m/s
10、某交流发电机给灯泡供电,产生正弦式交变电流的图象如图所示,下列说法中正确的是( )
A.交变电流的频率为
B.交变电流的瞬时表达式为
C.在时,穿过交流发电机线圈的磁通量最大
D.若发电机线圈电阻为,则其产生的热功率为5W
11、如图所示,匀强磁场中有一等边三角形线框abc,匀质导体棒在线框上向右匀速运动。导体棒在线框接触点之间的感应电动势为E,通过的电流为I。忽略线框的电阻,且导体棒与线框接触良好,则导体棒( )
A.从位置①到②的过程中,E增大、I增大
B.经过位置②时,E最大、I为零
C.从位置②到③的过程中,E减小、I不变
D.从位置①到③的过程中,E和I都保持不变
12、在探究影响电阻的因素时,对三个电阻进行了测量,把每个电阻两端的电压和通过它的电流在平面直角坐标系中描点,得到了A、B、C三个点,如图所示,下列关于三个电阻的大小关系正确的是( )
A.RB<RC
B.RA=RC
C.RA>RC
D.RA=RB
13、如图所示,把两个线圈绕在同一个矩形软铁芯上,线圈通过导线、开关与电池连接,线圈
用导线连通,导线下面平行放置一个可以自由转动的小磁针,且导线沿南北方向放置。下列说法正确的是( )
A.开关闭合的瞬间,小磁针不会转动
B.开关闭合,待电路稳定后,小磁针会转动
C.电路稳定后,断开开关的瞬间,小磁针不会转动
D.电路稳定后,断开开关的瞬间,小磁针会转动
14、如图所示,在直角坐标系xoy平面内存在一点电荷Q,坐标轴上有A、B两点且OA<OB,A、B两点场强方向均指向原点O,下列说法正确的是( )
A.点电荷Q带正电
B.B点电势比A点电势低
C.将正的试探电荷从A点沿直线移动到B点,电场力一直做负功
D.将正的试探电荷从A点沿直线移动到B点,电场力先做正功后做负功
15、某铁路安装有一种电磁装置可以向控制中心传输信号,以确定火车的位置和运动状态,其原理是将能产生匀强磁场的磁铁安装在火车首节车厢下面,如图甲所示(俯视图),当它经过安放在两铁轨间的线圈时,线圈便产生一个电信号传输给控制中心。线圈边长分别为和
,匝数为
,线圈和传输线的电阻忽略不计。若火车通过线圈时,控制中心接收到线圈两端的电压信号
与时间
的关系如图乙所示(
、
均为直线),
、
、
、
是运动过程的四个时刻,则火车( )
A.在时间内做匀速直线运动
B.在时间内做匀减速直线运动
C.在时间内加速度大小为
D.在时间内和在
时间内阴影面积相等
16、质量为m的滑块从半径为R的半球形碗的边缘滑向碗底,过碗底时速度为v,若滑块与碗间的动摩擦因数为μ,则在过碗底时滑块受到摩擦力的大小为( )
A.
B.
C.
D.
17、如图所示,a、b是环形通电导线内外两侧的两点,这两点磁感应强度的方向( )
A.均垂直纸面向外
B.a点水平向左;b点水平向右
C.a点垂直纸面向外,b点垂直纸面向里
D.a点垂直纸面向里,b点垂直纸面向外
18、利用电磁感应驱动的电磁炮,原理示意图如图甲所示,高压直流电源电动势为E,大电容器的电容为C。套在中空的塑料管上,管内光滑,将直径略小于管的内径的金属小球静置于管内线圈右侧。首先将开关S接1,使电容器完全充电,然后将S转接2,此后电容器放电,通过线圈的电流随时间的变化规律如图乙所示,金属小球在的时间内被加速发射出去(
时刻刚好运动到右侧管口)。下列关于该电磁炮的说法正确的是( )
A.小球在塑料管中的加速度随线圈中电流的增大而增大
B.在的时间内,电容器储存的电能全部转化为小球的动能
C.适当加长塑料管可使小球获得更大的速度
D.在的时间内,顺着发射方向看小球中产生的涡流沿逆时针方向
19、如图所示,半径为的特殊圆柱形透光材料圆柱体部分高度为
,顶部恰好是一半球体,底部中心有一光源
向顶部发射一束由
、
两种不同频率的光组成的复色光,当光线与竖直方向夹角
变大时,出射点
的高度也随之降低,只考虑第一次折射,发现当
点高度
降低为
时只剩下
光从顶部射出,下列判断正确的是( )
A.在此透光材料中光的传播速度小于
光的传播速度
B.光从顶部射出时,无
光反射回透光材料
C.此透光材料对光的折射率为
D.同一装置用、
光做双缝干涉实验,
光的干涉条纹较大
20、矩形线圈在匀强磁场中绕垂直于磁场的轴匀速转动时,产生的感应电动势最大值为50 V,那么该线圈由图示位置(线圈平面与磁场方向平行)转过30°时,线圈中的感应电动势大小为( )
A.
B.
C.
D.
21、颠球是足球运动基本技术之一,若质量为400g的足球用脚颠起后,竖直向下以4m/s的速度落至水平地面上,再以3m/s的速度反向弹回,取竖直向上为正方向,在足球与地面接触的时间内,关于足球动量变化量△p和合外力对足球做的功W,下列判断正确的是( )
A.△p=1.4kg·m/s W=-1.4J
B.△p=-1.4kg·m/s W=1.4J
C.△p=2.8kg·m/s W=-1.4J
D.△p=-2.8kg·m/s W=1.4J
22、如图所示,直线为某电源的
图线,直线
为某电阻
的
图线。用该电源和该电阻
组成闭合电路后,该电阻
正常工作。下列说法正确的是( )
A.该电源的电动势为
B.该电源的内阻为
C.该电阻的阻值为
D.该电源的输出功率为
23、对于功和能的关系,下列说法中正确的是( ).
A.功就是能,能就是功
B.功可以变为能,能可以变为功
C.做功过程就是物体能量的转化过程
D.功是物体能量的量度
24、电影《流浪地球》中呈现“领航员号”空间站通过旋转圆形空间站的方法获得人工重力的情形,即刘培强中校到达空间站时电脑“慕斯”所讲的台词“离心重力启动”,空间站模型如图。若空间站直径为,为了使宇航员感觉跟在地球表面上的时候一样“重”,取地球表面重力加速度为
,则空同站转动的周期为( )
A.
B.
C.
D.
25、如图所示,竖直平行放置的足够长的光滑导轨,相距,电阻不计,上端接有阻值为
的电阻,下面连有一根接触良好的能自由运动的水平导体棒,重力
,电阻为
,在导轨间有与导轨平面垂直的匀强磁场,磁感应强度为
.现使导体棒在重力的作用下向下运动,则导体棒下落的最大速度为
_______
;导体棒两端的最大电压为
__________V;上端电阻的最大功率
_____W.
26、通过如图的实验装置,卢瑟福建立了____________模型。实验时,若将显微镜分别放在位置1、2.3.则能观察到粒子数量最多的是位置___________.
27、如下图所示是一个电场的等势面,每两个相邻的等势面相距2cm,由此可以确定电场强度大小为__________V/m。
28、17世纪,荷兰物理学家__________提出了光的波动说,但由于__________支持微粒说,因而微粒说长期占着主导地位,19世纪观察到了光的__________、__________现象,波动说才得到了公认,后来又发现了__________,证实光具有粒子性,因而光具有__________.
29、如图所示,将一条形磁铁从螺线管拔出过程中穿过螺线管的磁通量变化情况是___________,螺线管中产生的感应电流的磁感线方向是向____________,螺线管受到条形磁铁的作用力方向是_______。
30、被人誉为从笔尖上发现的行星是太阳系八大行星中的___________星。
31、做“测定玻璃的折射率”的实验,先在白纸上放玻璃砖,在玻璃砖的一侧插上两枚大头针P1和P2,然后在棱镜的另一侧观察,同学接下来要完成的必要步骤,并在纸上标出的大头针位置和玻璃砖轮廓如图所示。
(1)该同学接下来要完成的必要步骤有___;
A.插上大头针P3,使P3仅挡住P2的像
B.插上大头针P3,使P3挡住P1的像和P2的像
C.插上大头针P4,使P4仅挡住P3的像
D.插上大头针P4,使P4挡住P3和P1、P2的像
(2)在本题的图上画出所需的光路;(空气中角用i玻璃中用r表示入射或折射角)____
(3)计算折射率的公式是n=___;
(4)该同学在实验中将玻璃砖界面AB、CD间距画得过宽。若其他操作正确,则折射率的测量值____(填“大于”、“小于”或“等于”)准确值。
32、如图所示,一矩形金属框架与水平面成角θ=37°,宽L=0.4m,上、下两端各有一个电阻R0=2Ω,框架的其他部分电阻不计,框架足够长,垂直于金属框架平面的方向有一向上的匀强磁场,磁感应强度B=1.0T,ab为金属杆,与框架良好接触,其质量m=0.1kg,电阻r=1.0Ω,杆与框架的动摩擦因数μ=0.5.杆由静止开始下滑,在速度刚好达到最大的过程中,上端电阻R0产生的热量Q0=0.5J(取g=10m/s2,sin 37°=0.6,cos 37°=0.8)。 求:
(1)当金属棒的速度是2m/s时,金属棒的加速度是多大;
(2)整个过程中流过R0的最大电流;
(3)从开始到速度最大的过程中ab杆沿斜面下滑的距离;
33、冰球运动员甲的质量为80.0kg。当他以5.0m/s的速度向前运动时,与另一质量为100kg、速度为3.0m/s的迎面而来的运动员乙相撞。碰后甲恰好静止。假设碰撞时间极短,求:
(1)碰后乙的速度的大小;
(2)碰撞中总机械能的损失。
34、如图所示为闭合电路中一部分导线在匀强磁场中垂直切割磁感线运动,已标出导线中产生的感应电流方向,试标出导线运动的速度方向.
35、如图甲所示,阻值不计的光滑金属导轨在竖直面上平行固定放置,间距d为0.5m,下端通过导线与阻值RL为4Ω的小灯泡L连接,在矩形区域CDFE内有水平向外的匀强磁场,磁感应强度B随时间变化的关系如图乙所示,CE长为2m.在t=0时刻,电阻R为1Ω的金属棒以某一初速度从AB位置紧贴导轨向下运动,当金属棒从AB位置运动到EF位置过程中,小灯泡的亮度没有发生变化,g取10m/s2.求:
(1)通过小灯泡的电流的大小;
(2)金属棒的质量;
(3)金属棒通过磁场区域所用的时间.
36、如图所示,一质子源位于P点,该质子源在纸面内各向均匀地发射N个质子。在P点下方放置有长度L=1.2m以O为中点的探测板,P点离探测板的垂直距离OP为a。在探测板的上方存在方向垂直纸面向里,磁感应强度大小为B的匀强磁场。已知质子电荷量q=1.60×10−19C,质子的质量与速度的乘积mv=4.8×10-21kg·m·s−1(不考虑粒子之间的相互作用)。求
(1)当a=0.15m,B=0.1T时,求计数率(即打到探测板上质子数与总质子数N的比值);
(2)若a取不同的值,可通过调节B的大小获得与(1)问中同样的计数率,求B与a的关系并给出B的取值范围。