1、如图所示为通过某种半导体材料制成的电阻的电流随其两端电压变化的关系图线,在图线上取一点M,其坐标为,其中过M点的切线与横轴正向的夹角为
,MO与横轴的夹角为α。则下列说法正确的是( )
A.该电阻阻值随其两端电压的升高而减小
B.该电阻阻值随其两端电压的升高而增大
C.当该电阻两端的电压时,其阻值为
D.当该电阻两端的电压时,其阻值为
2、某种除颤器的简化电路,由低压直流电源经过电压变换器变成高压电,然后整流成几千伏的直流高压电,对电容器充电,如图甲所示。除颤时,经过电感等元件将脉冲电流(如图乙所示)作用于心脏,实施电击治疗,使心脏恢复窦性心律。某次除颤过程中将电容为的电容器充电至
,电容器在时间
内放电至两极板间的电压为0。其他条件不变时,下列说法正确的是( )
A.线圈的自感系数L越大,放电脉冲电流的峰值越小
B.线圈的自感系数L越小,放电脉冲电流的放电时间越长
C.电容器的电容C越小,电容器的放电时间越长
D.在该次除颤过程中,流经人体的电荷量约为
3、如图所示,E、F分别表示蓄电池两极,P、Q分别表示螺线管两端.当闭合开关时,发现小磁针N极偏向螺线管Q端.下列判断正确的是
A.E为蓄电池正极
B.螺线管P端为S极
C.流过电阻R的电流方向向上
D.管内磁场方向由P指向Q
4、如图所示,质量为M、电阻为R、长为L的导体棒,通过两根长均为l、质量不计的导电细杆连在等高的两固定点上,固定点间距也为L。细杆通过开关S可与直流电源或理想二极管串接。在导体棒所在空间存在磁感应强度方向竖直向上、大小为B的匀强磁场,不计空气阻力和其它电阻。开关S接1,当导体棒静止时,细杆与竖直方向的夹角固定点
;然后开关S接2,棒从右侧开始运动完成一次振动的过程中( )
A.电源电动势
B.棒消耗的焦耳热
C.从左向右运动时,最大摆角小于
D.棒两次过最低点时感应电动势大小相等
5、图中虚线所示为某静电场的等势面,相邻等势面间的电势差都相等;实线为一试探电荷仅在电场力作用下的运动轨迹。该试探电荷在M、N两点受到的电场力大小分别为和
,相应的电势能分别为
和
,则( )
A.
B.
C.
D.
6、如图所示,很多游乐场有长、短两种滑梯,它们的高度相同。某同学先后通过长、短两种滑梯滑到底端的过程中,不计阻力,下列说法正确的是( )
A.沿长滑梯滑到底端时,重力的瞬时功率大
B.沿短滑梯滑到底端时,重力的瞬时功率大
C.沿长滑梯滑到底端过程中,重力势能的减少量大
D.沿短滑梯滑到底端过程中,重力势能的减少量大
7、图甲为某款“自发电”无线门铃按钮,其“发电”原理如图乙所示,按下门铃按钮过程磁铁靠近螺线管,松开门铃按钮磁铁远离螺线管回归原位置。下列说法正确的是( )
A.按下按钮过程,螺线管端电势较高
B.松开按钮过程,螺线管端电势较高
C.按住按钮不动,螺线管没有产生感应电动势
D.按下和松开按钮过程,螺线管产生大小相同的感应电动势
8、如图所示为齿轮的传动示意图,大齿轮带动小齿轮转动,大、小齿轮的角速度大小分别为ω1、ω2,两齿轮边缘处的线速度大小分别为v1、v2,则( )
A.ω1<ω2,v1=v2
B.ω1>ω2,v1=v2
C.ω1=ω2,v1>v2
D.ω1=ω2,v1<v2
9、如图所示,匀强磁场中有一等边三角形线框abc,匀质导体棒在线框上向右匀速运动。导体棒在线框接触点之间的感应电动势为E,通过的电流为I。忽略线框的电阻,且导体棒与线框接触良好,则导体棒( )
A.从位置①到②的过程中,E增大、I增大
B.经过位置②时,E最大、I为零
C.从位置②到③的过程中,E减小、I不变
D.从位置①到③的过程中,E和I都保持不变
10、对于功和能的关系,下列说法中正确的是( ).
A.功就是能,能就是功
B.功可以变为能,能可以变为功
C.做功过程就是物体能量的转化过程
D.功是物体能量的量度
11、如图所示,虚线上方存在垂直纸面向外的匀强磁场,在直角三角形
中,
,
。两个带电荷量数值相等的粒子a、b分别从
、
两点以垂直于
的方向同时射入磁场,恰好在
点相遇。不计粒子重力及粒子间相互作用力,下列说法正确的是( )
A.a带负电,b带正电
B.a、b两粒子的周期之比为
C.a、b两粒子的速度之比为
D.a、b两粒子的质量之比为
12、振动情况完全相同的两波源S1、S2(图中未画出)形成的波在同一均匀介质中发生干涉,如图所示为在某个时刻的干涉图样,图中实线表示波峰,虚线表示波谷,下列说法正确的是
A.a处为振动减弱点,c处为振动加强点
B.再过半个周期,c处变为减弱点
C.b处到两波源S1、S2的路程差可能为个波长
D.再过半个周期,原来位于a处的质点运动至c处
13、如图所示,两光滑平行导轨倾斜放置,与水平地面成一定夹角,上端接一电容器(耐压值足够大).导轨上有一导体棒平行地面放置,导体棒离地面的有足够的高度,匀强磁场与两导轨所决定的平面垂直,开始时电容器不带电.将导体棒由静止释放,整个电路电阻不计,则 ( )
A.导体棒一直做匀加速直线运动
B.导体棒先做加速运动,后作减速运动
C.导体棒先做加速运动,后作匀速运动
D.导体棒下落中减少的重力势能转化为动能,机械能守恒
14、如图所示,足够长的光滑平行金属导轨MN、固定在同一水平面内,导轨的左端P、M之间接有电容器C。在
的区域内存在着垂直于导轨平面向下的磁场,其磁感应强度B随坐标x的变化规律为
(k为大于零的常数)。金属棒ab与导轨垂直,从x=0的位置在水平外力F的作用下沿导轨做匀速直线运动,金属棒与导轨接触良好,金属棒及导轨的电阻均不计。关于电容器的带电量
、金属棒中的电流I、拉力F、拉力的功率P随x的变化图象正确的是( )
A.
B.
C.
D.
15、乒乓球运动的高抛发球是由我国运动员刘玉成于1964年发明的,后成为风世界乒乓球坛的一项发球技术.某运动员在一次练习发球时,手掌张开且伸平,将一质量为2.7g的乒乓球由静止开始竖直向上抛出,抛出后向上运动的最大高度为2.45m,若抛球过程,手掌和球接触时间为5ms,不计空气阻力,则该过程中手掌对球的作用力大小约为
A.0.4N
B.4N
C.40N
D.400N
16、一个重量为G的物体,在水平拉力F的作用下,一次在光滑水平面上移动x,做功W1,功率P1;另一次在粗糙水平面上移动相同的距离x,做功W2,功率P2。在这两种情况下拉力做功及功率的关系正确的是( )
A.W1=W2,P1>P2
B.W1>W2,P1>P2
C.W1=W2,P1=P2
D.W1>W2,P1=P2
17、图甲为一列简谐横波在t=0.10s时刻的波形图,P是平衡位置为x=lm处的质点,Q是平衡位置为x=4m处的质点.图乙为质点Q的振动图象.下列说法不正确的是( )
A.该波的传播速度为40m/s
B.从t=0.10s到t=0.25s,质点P通过的路程为30cm
C.该波沿x轴负方向传播
D.t=0.10s时,质点Q的速度方向向下
18、升降机沿竖直方向匀速下降的同时,一工人在升降机水平平台上向右匀速运动,以出发点为坐标原点O建立平面直角坐标系,水平向右为x轴正方向,竖直向下为y轴正方向,工人可视为质点,则该过程中站在地面上的人看到工人的运动轨迹可能是( )
A.
B.
C.
D.
19、某交流发电机给灯泡供电,产生正弦式交变电流的图象如图所示,下列说法中正确的是( )
A.交变电流的频率为
B.交变电流的瞬时表达式为
C.在时,穿过交流发电机线圈的磁通量最大
D.若发电机线圈电阻为,则其产生的热功率为5W
20、如图,光滑水平桌面上,a和b是两条固定的平行长直导线,通以相等电流强度的恒定电流。通有顺时针方向电流的矩形线框位于两条导线的正中央,在a、b产生的磁场作用下处于静止状态,且有向外扩张的形变趋势,则a、b导线中的电流方向( )
A.均向上
B.均向下
C.a向上,b向下
D.a向下,b向上
21、利用电磁感应驱动的电磁炮,原理示意图如图甲所示,高压直流电源电动势为E,大电容器的电容为C。套在中空的塑料管上,管内光滑,将直径略小于管的内径的金属小球静置于管内线圈右侧。首先将开关S接1,使电容器完全充电,然后将S转接2,此后电容器放电,通过线圈的电流随时间的变化规律如图乙所示,金属小球在的时间内被加速发射出去(
时刻刚好运动到右侧管口)。下列关于该电磁炮的说法正确的是( )
A.小球在塑料管中的加速度随线圈中电流的增大而增大
B.在的时间内,电容器储存的电能全部转化为小球的动能
C.适当加长塑料管可使小球获得更大的速度
D.在的时间内,顺着发射方向看小球中产生的涡流沿逆时针方向
22、汽车在水平地面转弯时,坐在车里的小云发现车内挂饰偏离了竖直方向,如图所示。设转弯时汽车所受的合外力为F,关于本次转弯,下列图示可能正确的是( )
A.
B.
C.
D.
23、一种心脏除颤器通过电容器放电完成治疗。在一次模拟治疗中,电容器充电后电压为4.0kV,在2.0ms内完成放电,这次放电通过人体组织的平均电流强度大小为30A,该心脏除颤器中电容器的电容为( )
A.15μF
B.10μF
C.20μF
D.30μF
24、某同学利用无人机玩“投弹”游戏,无人机以一定的速度沿水平方向匀速飞行,某时刻释放了一个小球。若将小球在空中的运动视为平抛运动,则下列说法正确的是( )
A.小球的速度大小不变
B.小球的速度方向不变
C.小球的加速度不变
D.小球所受合力增大
25、如图所示,质量为m的小球用长L的细线悬挂而静止在竖直位置.在下列两种情况下,分别用水平拉力F将小球拉到细线与竖直方向成θ角的位置.求此过程中,拉力F做的功:
(1)若用F缓慢地拉 ,则=_____________.
(2)若F为恒力时,则=_______________.
26、一正弦交流电的电压随时间变化的规律如图所示。由图可知
1)该交流电的频率为___________Hz
2)该交流电的电压的有效值为___________V
3)若将该交流电压加在阻值R=100 Ω的电阻两端,则电阻消耗的功率是___________W
4)当电压的瞬时值为50V时,则线圈平面与中性面的夹角是____________度
27、在探究平行板电容器的电容与哪些因素有关的实验中,某同学猜测电容可能与极板间的距离d、极板的正对面积S及插入极板间的介质有关。他将一个已经充电的平行板电容器与静电计连接如图所示。已知静电计指针张角随着电容器两极间的电势差的增大而增大。实验时保持电容器极板所带的电量不变,且电容器B板位置不动。(填“增大”、“减小”或“不变”)
(1)将A板向左平移,静电计指针张角___________;
(2)在A、B板间插入电介质,则静电计指针张角___________ 。
28、如图所示,质量均为1kg的两个小物体A、B(看做质点)在水平地面上相距9m,它们与水平地面间的动摩擦因数均为。现使它们分别以初速度
和
同时相向运动,重力加速度g取10m/s2。则它们经过_________s相遇(非碰撞),交错而过后最终两者相距_________m。
29、如图所示,水平面中的平行导轨P、Q相距L,它们的右端与电容为C的电容器的两极板分别相连,直导线ab放在P、Q上与导轨垂直相交并且沿导轨滑动,磁感应强度为B的匀强磁场竖直向下穿过导轨面,闭合开关S,若发现与导轨P相连的电容器极板上带负电荷,则ab向______沿导轨滑动(填“左”、“右”);如电容器的带电荷量为q,则ab滑动的速度v=______。
30、发现中子的科学家叫__________ ;其核反应方程式为 ________________ 。
31、利用双缝干涉测定光的波长实验中,双缝间距d=0.4mm,双缝到光屏间的距离L=0.5m,用某种单色光照射双缝得到干涉条纹如图所示,分划板在图中A、B位置时游标卡尺读数也如图中所给出,则:
(1)分划板在图中A、B位置时游标卡尺读数分别为xA=_____mm,xB=_____mm;求得相邻亮纹的间距Δx为_____mm。
(2)由计算式=_____(用题中所给字母表示);求得所测单色光的波长为
=_____nm。
(3)若改用频率较高的单色光照射,得到的干涉条纹间距将_____(填“变大”、“不变”或“变小”)。
32、如图所示,竖直放置的汽缸内壁光滑,横截面积为S=10-3 m2,活塞的质量为m=2 kg,厚度不计。在A、B两处设有限制装置,使活塞只能在A、B之间运动,B下方汽缸的容积为1.0×10-3 m3,A、B之间的容积为2.0×10-4 m3,外界大气压强p0=1.0×105 Pa,开始时活塞停在B处,缸内气体的压强为0.9p0,温度为27 ℃,现缓慢加热缸内气体,直至327 ℃。g=10 m/s2,求:
(1)活塞刚离开B处时气体的温度t2;
(2)缸内气体最后的压强。
33、科学精神的核心是对未知的好奇与探究。小君同学想寻找教科书中“温度是分子平均动能的标志”这一结论的依据。她以氦气为研究对象进行了一番探究。经查阅资料得知:第一,理想气体的模型为气体分子可视为质点,分子间除了相互碰撞外,分子间无相互作用力;第二,一定质量的理想气体,其压强p与热力学温度T的关系式为p=nkT,式中n为单位体积内气体的分子数,k为常数。
她猜想氦气分子的平均动能可能跟其压强有关。她尝试从理论上推导氦气的压强,于是建立如下模型:如图所示,正方体容器静止在水平面上,其内密封着理想气体—氦气,假设每个氦气分子的质量为m,氦气分子与器壁各面碰撞的机会均等;与器壁碰撞前后瞬间,分子的速度方向都与器壁垂直,且速率不变。请根据上述信息帮助小君完成下列问题:
(1)设单位体积内氦气的分子数为n,且其热运动的平均速率为v。
①求一个氦气分子与器壁碰撞一次受到的冲量大小I;
②求该正方体容器内氦气的压强p;
③请以本题中的氦气为例推导说明:温度是分子平均动能(即)的标志。
(2)小君还想继续探究机械能的变化对氦气温度的影响,于是进行了大胆设想:如果该正方体容器以水平速度u匀速运动,某时刻突然停下来,若氦气与外界不发生热传递,请你推断该容器中氦气的温度将怎样变化?并求出其温度变化量。
34、如图所示,一面积为的方形线圈
共50匝,电阻忽略不计,线圈在磁感应强度为
的匀强磁场中以
的角速度绕垂直于磁场的轴
匀速转动,外接电阻
,求:
(1)线圈中感应电流的最大值;
(2)若从图示位置开始计时,写出线圈中感应电流的瞬时表达式;
(3)电阻R消耗的功率。
35、如图所示,用频率不同的光照射某种金属产生光电效应,以测量的遏止电压Uc为纵轴,入射光频率ν为横轴建立平面直角坐标系。已知电子电荷量e=1.6×10-19C。请结合该图像,求:
(1)该金属的截止频率;
(2)普朗克常量h。
36、已知地球的质量为月球质量的81倍,地球半径为月球半径的4倍。
(1)求月球表面发射飞行器的第一宇宙速度? (地球上发射近地卫星的环绕速度取7.9km/s,结果取两位有效数字)
(2)地面控制中心唤醒月球车,使其以恒定功率100W运动,已知月球车质量120kg,运动中受到的阻力是其重力的0.24倍,求月球车匀速行驶时的速度?(地球表面处的重力加速度取9.8m/s2,结果取两位有效数字)