1、某同学将一毫安表改装成双量程电流表.如图所示,已知毫安表表头的内阻为100Ω,满偏电流为1 mA;R1和R2为定值电阻,且R1=5Ω,R2=20Ω,则下列说法正确的是
A.若使用a和b两个接线柱,电表量程为24 mA
B.若使用a和b两个接线柱,电表量程为25 mA
C.若使用a和c两个接线柱,电表量程为4 mA
D.若使用a和c两个接线柱,电表量程为10mA
2、丹麦物理学家奥斯特发现了电流磁效应,他在电与磁学研究上开创性的工作创立了物理研究的新纪元。某物理探究小组在实验室重复了奥斯特的实验,具体做法是:在静止的小磁针正上方,平行于小磁针水平放置一根直导线,当导线中通有电流时,小磁针会发生偏转;当通过该导线的电流为时,小磁针静止时与导线夹角为
。已知直导线在某点产生磁场的强弱与通过该直导线的电流成正比,若在实验中发现小磁针静止时与导线夹角为
,则通过该直导线的电流为( )
A.
B.
C.
D.
3、如图所示,在直角坐标系xoy平面内存在一点电荷Q,坐标轴上有A、B两点且OA<OB,A、B两点场强方向均指向原点O,下列说法正确的是( )
A.点电荷Q带正电
B.B点电势比A点电势低
C.将正的试探电荷从A点沿直线移动到B点,电场力一直做负功
D.将正的试探电荷从A点沿直线移动到B点,电场力先做正功后做负功
4、一太阳能电池板的电动势为0.80V,内阻为20Ω将该电池板与一阻值为140Ω的电阻连成闭合电路,该闭合电路的路端电压为( )
A.0.80V
B.0.70V
C.0.60V
D.0.50V
5、如图甲所示,水波传到两板间的空隙发生了明显的衍射,若不改变小孔的尺寸,只改变挡板的位置或方向,如图乙中的(a)、(b)、(c)、(d),则下列判断正确的是( )
A.只有(a)能发生明显衍射
B.只有(a)(b)能发生明显衍射
C.(a)、(b)、(c)、(d)均能发生明显衍射
D.(a)、(b)、(c)、(d)均不能发生明显衍射
6、如图所示,在地面上以速度斜向上抛出质量为
可视为质点的物体,抛出后物体落到比地面低
的海平面上。不计空气阻力,当地的重力加速度为
,若以地面为零势能面,则下列说法中正确的是( )
A.重力对物体做的功为
B.物体在海平面上的重力势能为
C.物体在海平面上的动能为
D.物体在海平面上的机械能为
7、某种除颤器的简化电路,由低压直流电源经过电压变换器变成高压电,然后整流成几千伏的直流高压电,对电容器充电,如图甲所示。除颤时,经过电感等元件将脉冲电流(如图乙所示)作用于心脏,实施电击治疗,使心脏恢复窦性心律。某次除颤过程中将电容为的电容器充电至
,电容器在时间
内放电至两极板间的电压为0。其他条件不变时,下列说法正确的是( )
A.线圈的自感系数L越大,放电脉冲电流的峰值越小
B.线圈的自感系数L越小,放电脉冲电流的放电时间越长
C.电容器的电容C越小,电容器的放电时间越长
D.在该次除颤过程中,流经人体的电荷量约为
8、如图所示,是两个研究平抛运动的演示实验装置,对于这两个演示实验的认识,下列说法正确的是( )
A.甲图中,两球同时落地,说明平抛小球在水平方向上做匀速运动
B.甲图中,两球同时落地,说明平抛小球在竖直方向上做自由落体运动
C.乙图中,两球恰能相遇,说明平抛小球在水平方向上做匀加速运动
D.乙图中,两球恰能相遇,说明平抛小球在水平方向上做自由落体运动
9、如图所示,某同学用拖把擦地板,他用力使拖把沿水平地板向前移动一段距离,在此过程中( )
A.该同学对拖把做负功
B.地板对拖把的摩擦力做负功
C.地板对拖把的支持力做负功
D.地板对拖把的支持力做正功
10、如图所示,小朋友在弹性较好的蹦床上跳跃翻腾,尽情玩耍.在小朋友接触床面向下运动的过程中,床面对小朋友的弹力做功情况是( )
A.先做负功,再做正功
B.先做正功,再做负功
C.一直做正功
D.一直做负功
11、库仑定律的表达式是( )
A.
B.
C.
D.
12、如图所示,平行板电容器与电源相接,充电后切断电源,然后将电介质插入电容器极板间,则两板间的电势差U及板间场强E的变化情况为( )
A.U变大,E变大
B.U变小,E变小
C.U不变,E不变
D.U变小,E不变
13、电影《流浪地球》中呈现“领航员号”空间站通过旋转圆形空间站的方法获得人工重力的情形,即刘培强中校到达空间站时电脑“慕斯”所讲的台词“离心重力启动”,空间站模型如图。若空间站直径为,为了使宇航员感觉跟在地球表面上的时候一样“重”,取地球表面重力加速度为
,则空同站转动的周期为( )
A.
B.
C.
D.
14、如图所示,光滑水平平台BC上固定一光滑斜面AB,AB与BC平滑连接,与BC等高的平台MN上固定一竖直圆弧形轨道,与平台MN左端相切于M点,半径R=0.4m,平台BC右侧水平地面上放一质量的木板,木板上表面与平台等高,左端紧靠平台BC。现将质量
的滑块从距斜面底端高h=1.25m处由静止释放,到达B点后,经平台滑到木板上,滑块滑到木板右端时,滑块恰好与木板速度相等,且木板刚好与平台MN相碰,碰后木板立即停止运动,滑块由于惯性滑上圆弧形轨道。已知滑块与木板间的动摩擦因数
,木板与地面间的动摩擦因数
,滑块可视为质点,重力加速度g取
。
根据上述信息,回答下列小题。
【1】滑块滑到斜面底端B时的速度大小为( )
A.2m/s
B.3m/s
C.4m/s
D.5m/s
【2】滑块在木板上滑动过程中木板的加速度大小为( )
A.
B.
C.
D.
【3】滑块没有滑上木板时,木板右端距平台MN左端的距离为( )
A.0.1m
B.0.3m
C.0.5m
D.0.8m
【4】滑块通过圆弧形轨道最低点M时,轨道对滑块的支持力大小为( )
A.25N
B.30N
C.35N
D.40N
15、交流发电机正常工作时产生的电动势 e=Emsinωt,若线圈匝数减为原来的一半,而转速增为原来的2倍,其他条件不变,则产生的电动势的表达式为
A.e=Emsinωt
B.e=2Emsinωt
C.e=Emsin2ωt
D.e=2Emsin2ωt
16、如图所示,虚线上方存在垂直纸面向外的匀强磁场,在直角三角形
中,
,
。两个带电荷量数值相等的粒子a、b分别从
、
两点以垂直于
的方向同时射入磁场,恰好在
点相遇。不计粒子重力及粒子间相互作用力,下列说法正确的是( )
A.a带负电,b带正电
B.a、b两粒子的周期之比为
C.a、b两粒子的速度之比为
D.a、b两粒子的质量之比为
17、某地有一风力发电机,它的叶片转动时可形成半径为20m的圆面。某时间内该地区的风向恰好跟叶片转动的圆面垂直,已知空气的密度为1.2kg/m3,假如这个风力发电机能将此圆内空气动能的10%转化为电能,若该风力发电机的发电功率约为1.63×104W,则该地区的风速约为( )
A.10m/s
B.8m/s
C.6m/s
D.4m/s
18、如图所示,小磁针静止在导线环中。当导线环通过沿逆时针方向的电流时,忽略地磁场影响,小磁针最后静止时N极所指的方向( )
A.水平向右
B.水平向左
C.垂直纸面向里
D.垂直纸面向外
19、如图所示,A、B为不同轨道地球卫星,轨道半径,质量
,A、B运行周期分别为TA和TB,受到地球万有引力大小分别为
和
,下列关系正确的是( )
A.
B.
C.
D.
20、某实验小组利用如图所示的电路图做“电池电动势和内阻的测量”实验,正确连接电路后,调节滑动变阻器R的阻值,得到多组电压表、电流表示数U、I,如下表所示。
电流I/A | 0.10 | 0.20 | 0.30 | 0.40 | 0.50 |
电压U/V | 1.30 | 1.10 | 0.91 | 0.70 | 0.50 |
根据上述信息,回答下列小题。
【1】实验时,按照上图所示电路图连接实物,下列实物连接图正确的是( )
A.
B.
C.
D.
【2】该电池的电动势约为( )
A.0.30V
B.0.50V
C.1.30V
D.1.50V
【3】该电池的内阻约为( )
A.2.00Ω
B.3.00Ω
C.4.00Ω
D.5.00Ω
21、嫦娥五号探测器(以下简称探测器)经过约112小时奔月飞行,在距月面约400km环月圆形轨道成功实施3000N发动机点火,约17分钟后,发动机正常关机。根据实时遥测数据监视判断,嫦娥五号探测器近月制动正常,从近圆形轨道Ⅰ变为近月点高度约200km的椭圆轨道Ⅱ,如图所示。已知月球的直径约为地球的,质量约为地球的
,请通过估算判断以下说法正确的是( )
A.月球表面的重力加速度与地球表面的重力加速度之比为4∶81
B.月球的第一宇宙速度与地球的第一宇宙速度之比为2∶9
C.“嫦娥五号”进入环月椭圆轨道Ⅱ后关闭发动机,探测器从Q点运行到P点过程中机械能增加
D.关闭发动机后的“嫦娥五号”不论在轨道Ⅰ还是轨道Ⅱ运行,“嫦娥五号”探测器在Q点的速度大小都相同
22、如图,绝缘光滑圆环竖直放置,a、b、c为三个套在半径为R圆环上可自由滑动的空心带电小球,已知小球c位于圆环最高点(未画出),ac连线与竖直方向成60°角,bc连线与竖直方向成30°角,小球a的电量为(q>0),质量为m,三个小球均处于静止状态。下列说法正确的是( )
A.a、b、c小球带同种电荷
B.a、b小球带异种电荷,b、c小球带同种电荷
C.a、b小球电量之比为
D.小球c电量数值为
23、乘坐高铁,已经成为人们首选的出行方式。某次高铁列车从沈阳开往北京,全程约700km,列车7:16开,用时2h30min。关于运动的描述,下列说法正确的是( )
A.7:16是时间间隔
B.2 h30 min是时刻
C.全程约700km是位移
D.全程约700km是路程
24、利用电磁感应驱动的电磁炮,原理示意图如图甲所示,高压直流电源电动势为E,大电容器的电容为C。套在中空的塑料管上,管内光滑,将直径略小于管的内径的金属小球静置于管内线圈右侧。首先将开关S接1,使电容器完全充电,然后将S转接2,此后电容器放电,通过线圈的电流随时间的变化规律如图乙所示,金属小球在的时间内被加速发射出去(
时刻刚好运动到右侧管口)。下列关于该电磁炮的说法正确的是( )
A.小球在塑料管中的加速度随线圈中电流的增大而增大
B.在的时间内,电容器储存的电能全部转化为小球的动能
C.适当加长塑料管可使小球获得更大的速度
D.在的时间内,顺着发射方向看小球中产生的涡流沿逆时针方向
25、一小电珠功率为0.75W,射出截面积为的平行光束,若小电珠消耗的能量中有1%转化为波长为
的可见光,则在光束横截面上,平均每秒每平方厘米上达到的光子数为_________(已知
)
26、如图为一正弦交流电的图像,该交流电的周期为_____s,电流的峰值为____A。
27、如图所示,两等量正电荷和
分别置于A、B两点,
为
连线的中垂线,C在连线上,D在无穷远处,现将一正电荷
由C点沿
移到D点的过程中,其电势能将__________,电场强度将________.
28、17世纪,荷兰物理学家__________提出了光的波动说,但由于__________支持微粒说,因而微粒说长期占着主导地位,19世纪观察到了光的__________、__________现象,波动说才得到了公认,后来又发现了__________,证实光具有粒子性,因而光具有__________.
29、江苏人民广播电视台的频率是700kHz,它的波长是_________m。
30、图甲为观测光电效应的实验装置示意图。已知实验中测得某种金属的遏止电压与入射光频率
之间的关系如图乙所示,则根据图象可知,普朗克常量
______,该金属的逸出功
______。如果实验中入射光的频率为
,则产生的光电子的最大初动能
______。(已知电子的电荷量为e)
31、在“测绘小灯泡的伏安特性曲线”实验中:
(1)如图甲所示,已经连接了一部分电路,请在答题纸上对应位置用笔画线代替导线将电路连接完整____。
(2)合上开关,测出9组I、U值,在I—U坐标系中描出各对应点,如图乙所示。请在答题纸画出对应特性曲线_____。
(3)由曲线可知,随着电流的增加小灯泡的电阻将____;
A.逐渐增大
B.逐渐减小
C.先增大后不变
D.先减小后不变
32、如图所示,半径为R、圆心为O的大圆环固定在竖直平面内,两个轻质小圆环套在大圆环上。一根轻质长绳穿过两个小圆环A、B,它的两端都系上质量为m的重物,忽略小圆环的大小。
(1)将两个小圆环A、B固定在大圆环竖直对称轴的两侧的位置上如图,在两个小圆环A、B间绳子的中点处套一个质量
的光滑圆环C,当环C处于某位置D时可以使C和两个重物m均处于静止状态,求D的位置?
(2)移去环C,小圆环A、B可以在大圆环上自由移动,且绳子与大、小圆环间及大、小圆环之间的摩擦均可以忽略。两个小圆环分别在哪些位置时,系统可以处于平衡状态?
33、如图所示,在y轴左侧存在竖直向下的匀强电场,电场强度大小为,y轴右侧至
区域(y方向无限长)有垂直向里的匀强磁场,磁感应强度大小为
,
与y轴的距离为
,在
点有一粒子发射器,可以垂直于磁场,向磁场区域发射带正电的粒子。已知粒子的质量为
,电荷量为
,重力不计。
(1)若发射器沿轴正方向发射粒子,发射速率为
,求粒子打到
轴上的位置到O点的距离;
(2)若发射器沿与y轴负半轴成发射粒子,为使所发射的粒子不从
边界射出,求发射的最大速度
和粒子在磁场中运动的时间
。
34、如图所示,质量为m的摆球用长为l的轻质细绳系于O点,O点正下方的粗糙水平地面上静止着一质量为M的钢块。现将摆球向左拉起,使细线水平,由静止释放摆球,摆球摆动至最低点时与钢块发生正碰,碰撞时间极短,碰后摆球反弹上升至最高点时与最低点的竖直高度差为l。已知钢块与水平面间的动摩擦因数为μ,摆球和钢块均可视为质点,不计空气阻力,水平面足够长。求:钢块与摆球碰后在地面上滑行的距离。
35、如图1所示,底面积S=10cm2、质量为M=2kg、足够长圆柱形导热汽缸开口向上置于水平地面上,缸内有两个质量均为m=1kg的可沿缸内壁无摩擦滑动的活塞,活塞封闭着A和B两部分气体(均视为理想气体),初始时两部分气柱的长度均为L0=12cm。现将整个装置放置在倾角为30°的光滑斜面上(如图2),在平行于斜面的外力F作用下一起沿斜面向上做匀加速运动,稳定后气体A的长度变为L1=11cm。整个过程环境的温度不变,大气压强恒为p0=1.0×105Pa,重力加速度g取10m/s2。求:
(1)外力F的大小;
(2)系统稳定后气体B的长度为多少(保留3位有效数字)。
36、如图甲所示,长为L=4.5 m的木板M放在水平地而上,质量为m=l kg的小物块(可视为质点)放在木板的左端,开始时两者静止.现用一水平向左的力F作用在木板M上,通过传感器测m、M两物体的加速度与外力F的变化关系如图乙所示.已知两物体与地面之间的动摩擦因数相同,且最大静摩擦力等于滑动摩擦力,g= 10m/s2.求:
(1)m、M之间的动摩擦因数;
(2)M的质量及它与水平地面之间的动摩擦因数;
(3)若开始时对M施加水平向左的恒力F=29 N,且给m一水平向右的初速度vo=4 m/s,求t=2 s时m到M右端的距离.