1、对于二元一次方程,用含
的方程表示
为( )
A. B.
C. D.
2、下列语句中属于命题的是( )
A. 作直线AB的平行线 B. 同旁内角相等 C. ∠1与∠2互余吗 D. 在线段AB上取点C
3、一把直尺和一块三角板ABC(含30°、60°角)摆放位置如图所示,直尺一边与三角板的两直角边分别交于点D、E,另一边与三角板的两直角边分别交于点F、A,且∠CDE=40°,那么∠BAF的大小为( )
A.40°
B.45°
C.15°
D.10°
4、如图,在△ABC中,∠ACB=90°,以点A为圆心,以AC长为半径画弧交AB于点D,连接CD,若CD=BD,则下列结论一定正确的是( )
A.AD=CD B.AC=CD C.∠A=2∠BCD D.∠B=∠ACD
5、如图,将△ABC纸片沿DE进行折叠,使点A落在四边形BCED的外部点A’的位置,若∠A=35°,则∠1-∠2的度数为( )
A.35°
B.70°
C.55°
D.40°
6、如图,AB∥EF∥CD,点G在AB上,GE∥BC,GE的延长线交DC的延长线于点H,则图中与∠AGE相等的角共有( )
A. 6个 B. 5个 C. 4个 D. 3个
7、如图,,点
在边
上,线段
,
交于点
,若
,则
的度数为( )
A. B.
C.
D.
8、下列运算中,正确的是( )
A. B.
C.
D.
9、如图,在7×7的方格纸中,每个小方格都是边长为1的小正方形,网格线的交点称格点,点A,点B是方格纸中的两个格点,找出格点C,使△ABC的面积为3,则满足条件的格点C的个数是( )
A.4个
B.5个
C.6个
D.8个
10、若实数a,b满足a+b=0,则下列说法正确的是( )
A. a,b互为倒数 B. a,b异号
C. a的绝对值等于b D. a,b互为相反数
11、已知4y2+my+9是完全平方式,则m为( )
A.6 B.±6 C.±12 D.12
12、 解方程组 ,如果用加减消元法消去n,那么下列方法可行的是( )
A.①×4+②×3 B.①×4-②×3 C.①×3-②×4 D.①×3+②×4
13、一辆汽车在笔直的公路上行驶,两次拐弯后,仍在原来的方向上平行前进,第一次右拐,第二次__________拐__________度.
14、关于x、y的方程组中,x+y=
15、小明和小斌都想去参加一项重要的活动,但只有一个名额.于是他们决定抓阄,两张纸条:一张写着“yes”,一张写着“no”,他们两人闭上眼睛随机各抓一张,抓住“yes”的就去,抓住“no”的就不去,这对双方公平吗?答:________(填“公平”或“不公平”).
16、PM2.5是雾霾中直径小于或等于2.5μm(1μm=0.000001m)的颗粒物,容易被吸入人的肺部,对人体健康造成影响.2.5μm用科学记数法表示是_______________m.
17、一个长方形的周长为16cm,一边长为xcm,面积为ycm2,则y与x之间的关系式为______(不必写出自变量取值范围).
18、若关于、
的二元一次方程组
,则
的算术平方根为_________.
19、近年来,我国大部分地区饱受“四面霾伏”的困扰,霾的主要成分是指直径小于或等于0.0000025m的粒子,数0.0000025用科学记数法可表示为_________.
20、在同一平面内,两条直线的位置关系只有______、______.
21、在平面直角坐标系中,△ABC的三个顶点的位置如图所示,点的坐标是(-2,2),现将△ABC平移,使点A对应点为点
点
分别是B、C的对应点.
(1)请画出平移后的(不写画法);
(2)直接写出点的坐标;
(3)若△ABC内部一点P的坐标为则点P的对应点
的坐标是_____.
22、按照下列要求画图并填空:
如图,点是
的边
上的一点,
(1)过点作
的垂线,交
于点
;
(2)在(1)的基础上作的边
上的高,垂足为
;
(3)线段___________的长度是点到直线
的距离;
(4)线段这三条线段大小关系是___________(用“<”号连接).
23、如图所示,三角形ABC(记作△ABC)在方格中,方格纸中每个小方格都是边长为1个单位的正方形,三个顶点的坐标分别是A(﹣2,1),B(﹣3,﹣2),C(1,﹣2),先将△ABC向上平移3个单位长度,再向右平移2个单位长度,得到A1B1C1
(1)在图中画出△A1B1C1;
(2)点A1,B1,C1的坐标分别为 、 、 ;
(3)若直线BC上有一点P,使△PAC的面积是△ABC面积的2倍,直接写出P点的坐标.
24、如图,已知∠1+∠2=180o, ∠3=∠B,试说明∠DEC+∠C=180o.请完成下列填空:
解:∵∠1+∠2=180o(已知)
又∵∠1+∠4=180o(平角定义)
∴∠2=∠4(________)
∴______∥______(_________)
∴∠3 =∠ADE(__________)
又∵∠3=∠B(已知)
∴∠ADE=∠B(等量代换)
∴BC∥_____(_________)
∴∠DEC+∠C=180o(__________)
25、如图,在平面直角坐标系xOy中,直线y=x+2与x轴交于点A,与y轴交于点C.抛物线y=ax2+bx+c的对称轴是直线x=-
,且经过A,C两点,与x轴的另一交点为点B.
(1)①直接写出点B的坐标;②求抛物线的解析式.
(2)抛物线上是否存在点M,过点M作MN垂直x轴于点N,使得以点A,M,N为顶点的三角形与△ABC相似?若存在,求出点M的坐标;若不存在,请说明理由.
26、爷爷和他的孙子小明星期天一起去爬山.来到山脚下,小明让爷爷先上山,然后追赶爷爷,如图所示,两条线段分别表示小明和爷爷离开山脚的距离(米)与爬山所用时间(分)的关系(小明开始爬山时开始计时),请看图回答下列问题:
(1)爷爷比小明先上了 米,山顶离山脚 米.
(2)写出图中两条线段的交点表示的实际意义 .
(3)小明在爬山过程中何时与爷爷相距20米?