1、在中,∠B是直角,∠C=50°,那么∠A的度数是( )
A.30°
B.40°
C.50°
D.130°
2、下列命题中的真命题是
A.三个角相等的四边形是矩形
B.对角线互相垂直且相等的四边形是正方形
C.顺次连接矩形四边中点得到的四边形是菱形
D.正五边形既是轴对称图形又是中心对称图形
3、用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象(如图所示),则所解的二元一次方程组是( ).
A. B.
C. D.
4、下列图形中既是中心对称图形又是轴对称图形的是( )
A. B.
C.
D.
5、如图,网格中每个小正方形的边长均为1,点都在格点上,以
为圆心,
为半径画弧,交最上方的网格线于点
,则
的长为
A. B. 0. 8
C. D.
6、已知多项式x2+ax﹣6因式分解的结果为(x+2)(x+b),则a+b的值为( )
A.﹣4 B.﹣2 C.2 D.4
7、如图,在菱形ABCD中,对角线AC,BD交于点O,DE⊥AB于点E,连接OE,若DE=,BE=1,则∠AOE的度数是( )
A.30° B.45° C.60° D.75°
8、若一个三角形三个内角度数的比为1:3:5,那么这个三角形是( )
A.直角三角形
B.锐角三角形
C.钝角三角形
D.等边三角形
9、如图,在中,
,将
沿图示中的虚线剪开,剪下的阴影三角形与原三角形不相似的是( )
A. B.
C. D.
10、下列代数式是分式的是( )
A. B.
C.
D.
11、数据2,0,1,9的平均数是__________.
12、在、
和
中,与
是同类二次根式的_____.
13、已知是一元二次方程
的两实根,则代数式
_______.
14、某公司欲招聘一名公关人员,对甲、乙两位候选人进行了面试和笔试,他们的成绩如表:
候选人 | 甲 | 乙 | |
测试成绩(百分制) | 面试 | 85 | 90 |
笔试 | 90 | 80 |
如果公司认为,作为公关人员面试的成绩应该比笔试的成绩更重要,并分别赋予它们6和4的权.甲的平均成绩__,乙的平均成绩__,公司将录取__.
15、方程组的解是 .
16、如图,矩形中,
,连接
,以对角线
为边按逆时针方向作矩形
,使矩形
矩形
;再连接
,以对角线
为边,按逆时针方向作矩形,使矩形
矩形
, ..按照此规律作下去,若矩形
的面积记作
,矩形
的面积记作
,矩形
的面积记作
, ... 则
的值为__________.
17、八年级(3)班共有学生50人,如图是该班一次信息技术模拟测试成绩的频数分布直方图(满分为50分,成绩均为整数),若不低于30分为合格,则该班此次成绩达到合格的同学占全班人数的百分比是__________.
18、若关于的一元二次方程
有一个根为1,则实数
的值_____________.
19、关于的方程
的解是正数,则符合条件的
的最小整数值为______
20、已知函数y=-x+m与y=mx-4的图象交点在y轴的负半轴上,那么,m的值为____.
21、6月5日是世界环境日,某校组织了一次环保知识竞赛,每班选25名同学参加比赛,成绩分别为A、B、C、D四个等级,其中相应等级的得分依次记为100分、90分、80分、70分,学校将某年级的一班和二班的成绩整理并绘制成如下统计图:
根据以上提供的信息解答下列问题:
(1)把一班竞赛成绩统计图补充完整;
(2)写出下表中a,b,c的值:
| 平均数(分) | 中位数(分) | 众数(分) |
一班 | a | b | 90 |
二班 | 87.6 | 80 | c |
(3)请从以下给出的三个方面对这次竞赛成绩的结果进行
①从平均数和中位数方面比较一班和二班的成绩;
②从平均数和众数方面比较一班和二班的成绩;
③从B级以上(包括B级)的人数方面来比较一班和二班的成绩.
22、在平面直角坐标系中,已知△ABC三个顶点的坐标分别为A(0,0),B(3,3),C(4,1).
(1)画出△ABC及△ABC绕点A逆时针旋转90°后得到的△AB1C1;
(2)分别写出B1和C1的坐标.
23、如图,长方体盒子(无盖)的长、宽、高分别是12cm,8cm,30cm,在AB中点C处有一滴蜜糖,一只小虫从P处爬到C处去吃,有无数种走法,则最短路程是多少?
24、(1)(操作发现)
如图1,在边长为1个单位长度的小正方形组成的网格中,△ABC的三个顶点均在格点上.请按要求画图:将△ABC绕点A按顺时针方向旋转90°,点B的对应点为B′,点C的对应点为C′,连接BB′,则∠AB′B= .
(2)(问题解决)
如图2,在等边三角形ABC内有一点P,且PA=2,PB=,PC=1,求∠BPC的度数和等边三角形ABC的边长;
(3)(灵活运用)
如图3,在正方形ABCD内有一点P,且PA=,BP=
,PC=1,求∠BPC的度数.
25、在△ABC 中,∠BAC=90°,AB<AC,M 是 BC 边的中点,MN⊥BC交 AC 于点 N,动点 P 在线段 BA 上以每秒 cm 的速度由点 B 向点 A 运动.同时, 动点 Q 在线段 AC 上由点 N 向点 C 运动,且始终保持 MQ⊥MP. 一个点到终点时,两个点同时停止运动.设运动时间为 t 秒(t>0).
(1)△PBM 与△QNM 相似吗?请说明理由;
(2)若∠ABC=60°,AB=4 cm.
①求动点 Q 的运动速度;
②设△APQ 的面积为 s(cm2),求 S 与 t 的函数关系式.(不必写出 t 的取值范围)
(3)探求 BP²、PQ²、CQ² 三者之间的数量关系,请说明理由.