1、如图,在平面直角坐标系中,双曲线y(k>0)与一直线交于A(﹣2,m)、B(1,n)两点,点H是双曲线第三象限上的动点(在点A右侧),直线AH、BH分别与y轴交于P、Q两点,若HA=a•HP,HB=b•HQ,则a,b的关系式成立的是( )
A.a+b=2
B.a﹣b=﹣2
C.a+2b=3
D.a﹣2b=﹣3
2、下列计算正确的是( )
A.
B.
C.
D.
3、小丽在“红色研学”活动中深受革命先烈事迹的鼓舞,用正方形纸片制作成图1的七巧板,设计拼成图2的“奔跑者”形象来激励自己.已知图1正方形纸片的边长为4,图2中,则“奔跑者”两脚之间的跨度,即
之间的距离是( )
A.
B.
C.4
D.
4、已如x=2y,则分式的值为( )
A.3 B.﹣3 C. D.﹣
5、如果a2+2a﹣3=0,那么代数式(a)•
的值是( )
A.3 B.﹣1 C.1 D.﹣3
6、下列说法正确的是( )
A. 要了解人们对“绿色出行”的了解程度,宜采用普查方式;
B. 随机事件的概率为50%,必然事件的概率为100%;
C. 一组数据3,4,5,5,6,7的众数和中位数都是5;
D. 若甲组数据的方差是0.168,乙组数据的方差是0.034,则甲组数据比乙组数据稳定.
7、如图,给出下列条件:①;②
;③
;④
;⑤
.其中,一定能判定
的条件的个数有( )
A.
B.
C.
D.
8、在Rt△ABC中∠C=90°,∠A、∠B、∠C的对边分别为a、b、c,c=3a,tanA的值为( )
A. B.
C.
D. 3
9、如图,△ABC是一张三角形的纸片,⊙O是它的内切圆,点D是其中的一个切点,已知AD=10cm,小明准备用剪刀沿着与⊙O相切的任意一条直线MN剪下一块三角形(△AMN),则剪下的△AMN的周长为( )
A. 20cm B. 15cm C. 10cm D. 随直线MN的变化而变化
10、为满足人民对美好生活的向往,造福子孙后代,环保部门要求相关企业加强污水治理能力,污水排放未达标的企业要限期整改.甲、乙两个企业的污水排放量W与时间t的关系如图所示,我们用表示t时刻某企业的污水排放量,用
的大小评价在
至
这段时间内某企业污水治理能力的强弱.已知甲、乙两企业在整改期间排放的污水排放量与时间的关系如下图所示.
给出下列四个结论:
①在这段时间内,甲企业的污水治理能力比乙企业强;
②在时刻,乙企业的污水排放量高;
③在时刻,甲、乙两企业的污水排放量都已达标;
④在,
,
这三段时间中,甲企业在
的污水治理能力最强.
其中所有正确结论的序号是( )
A.①②③
B.①③④
C.②④
D.①③
11、甲、乙两位同学参加跳高训练,在相同条件下各跳10次,统计各自成绩的方差得S甲2<S乙2,则成绩较稳定的同学是 .
12、如图,在等边△ABC中,将△ABC绕顶点C顺时针旋转,旋转角为α(0°<α<180°),得到△A1B1C.设AC的中点为D,A1B1的中点为M,AC=2,连接MD.当α=60°时,MD的长度为_____;设MD=x,在整个旋转过程中,x的取值范围是_____.
13、不等式组的整数解是_____.
14、﹣的倒数是_____.
15、如图,已知⊙O是△ABC的内切圆,且∠BAC=50°,则∠BOC为 度.
16、如果某人沿坡度=4:3的斜坡前进50米后,他所在的位置比原来的位置升高了_______米.
17、如图,在平面直角坐标系中,直线
与
轴交于点
,与
轴交于点
抛物线
的对称轴是直线
与
轴的交点为点
且经过点
两点.
(1)求抛物线的解析式;
(2)点为抛物线对称轴上一动点,当
的值最小时,请你求出点
的坐标;
(3)抛物线上是否存在点,过点
作
轴于点
使得以点
为顶点的三角形与
相似?若存在,请直接写出点
的坐标;若不存在,请说明理由.
18、某旅游团乘坐旅游中巴车以50千米/时的速度匀速从甲地到相距200千米的乙地旅游.行驶了80千米时,车辆出现故障,与此同时,得知这个情况的乙地旅行社立刻派出客车以80千米/时的速度前来接应.相遇后,旅游团用了18分钟从旅游中巴换乘到客车上,随后以v(千米/时)的速度匀速到达乙地.设旅游团离开甲地的时间为x(小时),旅游中巴车距离乙地的路程为y1(千米),客车在遇到旅游团前离开乙地的路程y2(千米).
(1)若v=80千米/时,
①y1与x的函数表达式为 .
②求y2与x的函数表达式,并写出x的取值范围.
(2)设旅游团从甲地到乙地所用的总时间为T(小时),求T(小时)与v(千米/时)的函数关系式(不写v的取值范围).
(3)旅游团要求到达时间比按原来的旅游中巴正常到达乙地的时间最多晚1个小时,问客车返回乙地的车速至少为每小时多少千米?
19、设a,b是任意两个实数,规定a与b之间的一种运算“⊕”为:a⊕b=,
例如:1⊕(﹣3)==﹣3,(﹣3)⊕2=(﹣3)﹣2 =﹣5,
(x2+1)⊕(x﹣1)=(因为x2+1>0)
参照上面材料,解答下列问题:
(1)2⊕4= ,(﹣2)⊕4= ;
(2)若x>,且满足(2x﹣1)⊕(4x2﹣1)=(﹣4)⊕(1﹣4x),求x的值.
20、如图,在△ABC中,AC=1,AB=2,∠BAC=60°,求BC的长.
21、如图,正方形ABCD的边长为1,点E为边AB上一动点,连结CE并将其绕点C顺时针旋转90°得到CF,连结DF,以CE、CF为邻边作矩形CFGE,GE与AD、AC分别交于点H、M,GF交CD延长线于点N.
(1)证明:点A、D、F在同一条直线上;
(2)随着点E的移动,线段DH是否有最小值?若有,求出最小值;若没有,请说明理由;
(3)连结EF、MN,当MN∥EF时,求AE的长.
22、如图,已知抛物线经过原点O,与x轴交于点
,直线
交x轴于点B,交抛物线于点C(点C在第三象限).
(1)求抛物线的解析式;
(2)若点D是点C关于抛物线对称轴的对称点,连接,求
的长;
(3)若点P为线段上的一个动点,连接
,以
D为边向右作等边三角形
.当点P从点A开始向右运动到点O时,线段
扫过的面积为____________.
23、如图,已知Rt△OAB,,
,斜边
cm,将Rt△OAB绕点O顺时针旋转60°,得到△ODC,连接BC.点M从点D出发,沿DB方向匀速行动,速度为1cm/s;同时,点N从点O出发,沿OC方向匀速运动,速度为2cm/s;当一个点停止运动,另一个点也停止运动,连接AM,MN,MN交CD于点P.设运动时间为t(s)
,解答下列问题:
(1)当t为何值时,OM平分?
(2)设四边形AMNO的面积为(cm2),求S与t的函数关系式;
(3)在运动过程中,当时,求四边形AMNO的面积;
(4)在运动过程中,是否存在某一时刻t,使点P为线段CD的中点?若存在,求出t的值;若不存在,请说明理由.
24、计算: