1、如图,某小区有一块平行四边形状(即图中平行四边形ABCD)土地,土地中有一条平行四边形小路(即平行四边形AECF),其余部分被直线l分割成面积分别为S1,S2,S3,S4四个区域,小区物业准备在这四个区域中种上不同的四种花卉,已知l∥AD,交AB于点M,,则
=( )
A. B.
C.
D.
2、-3的相反数是( )
A. 3 B. -3 C. D. -
3、下列等式正确的是( ).
A. B.2
+3
=5
C.·
=6 D.
4、如图是一个用相同的小立方块搭成的几何体的三视图,则组成这个几何体的小立方块的个数是( )
A. 2 B. 3 C. 4 D. 5
5、下列运算正确的是( )
A.x3+x2=x5
B.(x+y)2=x2+y2
C.x3÷x=x3
D.(﹣3x)2=9x2
6、如图,△ABC中,AB⊥BC,AB=2CB,以C为圆心,CB为半径作弧交AC于点D,以A为圆心,AD长为半径画弧交AB于点E,则的值是( )
A. B.
C.
D.
7、如图,在中,
,按以下步骤作图:①以点A为圆心,以任意长为半径作弧,分别交
、
于点M、N;②分别以M、N为圆心,以大于
的长为半径作弧,两弧在
内交于点O;③作射线
,交
于点D.若点D到
的距离为2,则
的长为( )
A.4
B.
C.
D.
8、二次函数图象的一部分如图所示,顶点坐标为
,与
轴的一个交点的坐标为(-3,0),给出以下结论:①
;②
;③若
、
为函数图象上的两点,则
;④当
时方程
有实数根,则
的取值范围是
.其中正确的结论的个数为( )
A.1个 B.2个 C.3个 D.4个
9、一个不透明的盒子中装有5个红球,3个黄球和4个绿球,这些球除了颜色外无其他差别,从中随机摸出一个小球,恰好是黄球的概率为( )
A.
B.
C.
D.
10、一个盒子里装有除颜色外都相同的3个球,其中2个红球,1个白球.现从盒子里随意摸出1个不放回,再摸出1个,两次均摸到红球的概率是( )
A.
B.
C.
D.
11、如图,已知抛物线与x 轴交于A,B两点,与y轴交于点C,将抛物线沿x轴x轴向左(或右)平移
个单位长度,使得平移后的抛物线与x轴、y轴的三个交点为顶点的三角形的面积为6,则
的值是________________
12、对于二次函数y=5x2+bx+c,甲、乙、丙、丁四位同学给出四个说法,甲:图象对称轴是x=1;乙:函数最小值为3;丙:当x=﹣1时,y=0;丁:点(2,8)在函数图象上.其中有且仅有一个说法是错误的,则哪位同学的说法是错误的_____.
13、化简:=____________.
14、如图,8×8的正方形网格纸上有扇形OAB和扇形OCD,点O,A,B,C,D均在格点上.若用扇形OAB围成一个圆锥的侧面,记这个圆锥的底面半径为r1;若用扇形OCD围成另一个圆锥的侧面,记这个圆锥的底面半径为r2,则的值为______.
15、甲箱中装有3个篮球,分别标号为1,2,3;乙箱中装有2个篮球.分别标号为1,2,现分别从每个箱中随机取出1个篮球,则取出的两个篮球的标号之和为3的概率是_____.
16、二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴为x=1,给出下列结论:
①abc>0;②b2=4ac; ③4a+2b+c>0;④3a+c>0,
其中,正确的结论是______.(写出正确结论的序号)
17、如图,△ABC中,BE是它的角平分线,∠C=90°,D在AB边上,以DB为直径的半圆O经过点E,交BC于点F.
(1)求证:AC是⊙O的切线;
(2)已知∠A=30°,⊙O的半径为4,求图中阴影部分的面积.
18、报刊零售点从报社以每份0.30元买进一种晚报,零售点卖出的价格为0.50元,约定卖不掉的报纸可以退还给报社,退还的钱数y(元)与退还的报纸数量k(份)之间的函数关系式如下:当0≤k<30时, y=;当k≥30时,y=0.02k,现经市场调查发现,在一个月中(按30天记数)有20天可卖出150份/天,有10天只能卖出100份/天,而报社规定每天批发给摊点的报纸的数量必须相同.
(1)若该家报刊摊点每天从报社买进的报纸数x份(满足100<x≤150),月毛利润为W元,求W关于x的函数关系式;
(2)当买进多少报纸时,月毛利润最大?为多少?(注:月毛利润=月总销售额-月总成本).
19、某数学兴趣小组的同学在研究函数的图象时,先对函数
的图象进行了如下探索.
①列表:列出
与
的几组对应值如下:
··· | ··· | |||||||||||
··· | ··· |
②描点:根据表中数据描点如图所示;
③连线:请在图中画出函数的图象;
④观察图象,写出两条关于该函数的性质.
根据以上探究结果,完成下列问题:
①函数中,自变量
的取值范围为 ;
②函数的图象可由函数
的图象经过怎样的变换得到?
③写出两条关于函数的性质;
④直接写出不等式的解集.
20、如图所示,BD,CE是△ABC的高,求证:E,B,C,D四点在同一个圆上.
21、已知一次函数y1=kx-2(k为常数,k≠0)和y2=x+1.
(1)当k=3时,若y1>y2,求x的取值范围.
(2)在同一平面直角坐标系中,若两函数的图像相交所形成的锐角小于15°,请直接写出k的取值范围.
22、如图,Rt△ABO的顶点A(a、b)是一次函数y=x+m的图像与反比例函数的图像在第一象限的交点,且S△ABO=3。
①根据这些条件你能够求出反比例函数的解析式吗?如果能够,请你求出来,如果不能,请说明理由。
②你能够求出一次函数的函数关系式吗?如果能,请你求出来,如果不能,请你说明理由。
23、如图,点E,F在BC上, ,
,
,AF与DE交于点G.
(1)求证: .
(2)请用无刻度的直尺画出BC的垂直平分线(保留画图痕迹).
24、某车间准备采取每月任务定额,超产有奖的措施提高工作效率,为制定一个恰当的生产定额,从该车间200名工人中随机抽取20人统计其某月产量如下:
每人生产零件数 | 260 | 270 | 280 | 290 | 300 | 310 | 350 | 520 |
人 数 | 1 | 1 | 5 | 4 | 3 | 4 | 1 | 1 |
(1)请应用所学的统计知识.为制定生产定额的管理者提供有用的参考数据;
(2)你认为管理者将每月每人的生产定额定为多少最合适?为什么?
(3)估计该车间全年可生产零件多少个?