1、下列各式中一定是二次根式的是( )
A. B.
C.
D.
2、如图,Rt△ABC中,∠ACB=90°,AC=BC=2,若把Rt△ABC绕边AB所在直线旋转一周,则所得几何体的表面积为( )
A. 4π B. 4π C. 8π D. 8
π
3、如图,在正方形ABCD中,点P是AB上一动点(不与A,B重合),对角线AC,BD相交于点O,过点P分别作AC,BD的垂线,分别交AC,BD于点E,F,交AD,BC于点M,N.下列结论:①△APE≌△AME;②PM+PN=BD;③PE2+PF2=PO2.其中正确的有( )
A.0个 B.1个 C.2个 D.3个
4、把一元二次方程(1﹣x)(2﹣x)=3﹣x2化成一般形式ax2+bx+c=0(a≠0)其中a、b、c分别为( )
A. 2、3、﹣1 B. 2、﹣3、﹣1 C. 2、﹣3、1 D. 2、3、1
5、如图,在▱ABCD中,若∠B=70°,则∠D=( )
A.35°
B.70°
C.110°
D.130°
6、如图,在矩形ABCD中,AD=AB,∠BAD的平分线交BC于点E,DH⊥AE于点H,连接BH并延长交CD于点F,连接DE交BF于点O,下列结论:①△ABE≌△ADH;②HE=CE;③H是BF的中点;④AB=HF;其中正确的有( )
A.1个 B.2个 C.3个 D.4个
7、在我校“出彩广益人”演讲比赛中,有 9 名学生参加决赛,他们决赛的最终成绩各不相同,其中的一名学生想要知道自己能否进入前5 名,不仅要了解自己的成绩,还要了解这9 名学生成绩的( )
A.众数 B.方差 C.平均数 D.中位数
8、如图,若△DEF是由平移后得到的,已知点
之间的距离为1,
则
( )
A.1 B.2 C.3 D.不确定
9、顺次连接任意四边形ABCD各边的中点所得四边形是( )
A.一定是平行四边形 B.一定是菱形
C.一定是矩形 D.一定是正方形
10、如图,在△ABC中,∠C=90°,∠B=60°,AD平分∠BAC,DE⊥AB于E,BE=2,则AB的长为( )
A.8 B.4+ C.4+2
D.8+4
11、如图,在矩形ABCD中,对角线AC、BD相交于点O,点E、F分别是AO、AD的中点,若AB=2cm,BC=16cm,则EF=_________cm.
12、已知函数在实数范围内有意义,则自变量
的取值范围是__________.
13、如图,五边形ABCDE是正五边形.若l1∥l2,则∠1-∠2=________°.
14、已知a,b为实数,且+
=0,则a2015﹣b2016的值为_____.
15、如图四边形ABCD,AD∥BC,AB⊥BC,AD=1,AB=2,BC=3,P为AB边上的一动点,以PD,PC为边作平行四边形PCQD,则对角线PQ的长的最小值是_____.
16、如图,O是矩形ABCD的对角线AC的中点,M是AD的中点,若AB=5,BC=12,则四边形ABOM的周长为____.
17、如图,点E是矩形ABCD的边CD上一点,把△ADE沿AE对折,使点D恰好落在BC边上的F点处.已知折痕,且
,那么该矩形的周长为______cm.
18、命题“对角线相等的四边形是矩形”的逆命题是_____________.
19、某校九(1)班分成12小组做50米短跑练习,并且各组将每次的时间都记录下来,每组都跑五次,各组对谁的成绩比较稳定意见不一,如果你是其中的一员,你应该选用的统计量是_____.
20、代数式有意义时,
应满足的条件是___________.
21、问题提出:将一个边长为n(n≥2)的正三角形的三条边n等分,连接各边对应的等分点, 则该三角形被剖分的网格中的结点个数和线段数分别是多少呢?
问题探究:要研究上面的问题,我们不妨先从特例入手,进而找到一般规律
探究一:将一个边长为2的正三角形的三条边平分,连接各边中点,则该三角形被剖分的网格中的结点个数和线段数分别是多少?
如图1,连接边长为2的正三角形三条边的中点,从上往下:共有1+2+3=6个结点.边长为1的正三角形,第一层有1个,第二层有2个,共有1+2=3个,线段数为3×3=9条;边长为2的正三角形有1个,线段数为3条,总共有3×(1+2+1)=2×(1+2+3)=12条线段.
探究二:将一个边长为3的正三角形的三条边三等分,连接各边对应的等分点,则该三角形被剖分的网格中的结点个数和线段数分别是多少?
如图2,连接边长为3的正三角形三条边的对应三等分点,从上往下:共有1+2+3+4=10个结点.边长为1的正三角形,第一层有1个,第二层有2个,第三层有3个,共有1+2+3=6个,线段数为3×6=18条;边长为2的正三角形有1+2=3个,线段数为3×3=9条,边长为3的正三角形有1个,线段数为3条,总共有3×(1+2+3+1+2+1)=3×(1+2+3+4)=30条线段.
探究三:
请你仿照上面的方法,探究将边长为4的正三角形的三条边四等分(图3),连接各边对应的等分点,该三角形被剖分的网格中的结点个数和线段数分别是多少?
(画出示意图,并写出探究过程)
问题解决:
请你仿照上面的方法,探究将一个边长为n(n≥2)的正三角形的三条边n等分,连接各边对应的等分点,则该三角形被剖分的网格中的结点个数和线段数分别是多少?(写出探究过程)
实际应用:
将一个边长为30的正三角形的三条边三十等分,连接各边对应的等分点,则该三角形被剖分的网格中的结点个数和线段数分别是多少?
22、甲、乙两支篮球队在集训期内进行了五场比赛,将比赛成绩进行统计后,绘制成如图1、图2的统计图.
(1)在图2中画出折线表示乙队在集训期内这五场比赛成绩的变化情况;
(2)已知甲队五场比赛成绩的平均分分,请你计算乙队五场比赛成绩的平均分
;
(3)就这五场比赛,分别计算两队成绩的极差;
(4)如果从甲、乙两队中选派一支球队参加籃球锦标赛,根据上述统计情况,试从平均分、折线的走势、获胜场数和极差四个方面分别进行简要分析,你认为选派哪支球队参赛更能取得好成绩?
23、定义:(ⅰ)如果两个函数 ,存在
取同一个值,使得
,那么称
为“互联互通函数”,称对应的
值为
的“互联点”; (ⅱ)如果两个函数
为“互联互通函数”,那么
的最大值称为
的“互通值”.
(1)判断函数与
是否为“互通互联函数”,如果是,请求出
时他们的“互联点”,如果不是,请说明理由;
(2)当时,已知函数
与
是“互联互通函数”.且有唯一“互联点”;
①求出的取值范围;
②若他们的“互通值”为18 ,试求出 的值.
24、平面直角坐标系xoy中,点P的坐标为(m+1,m-1).
(1)试判断点P是否在一次函数y=x-2的图象上,并说明理由;
(2)如图,一次函数y= -x+3的图象与x轴、y轴分别相交于点A、B,若点P在△AOB的内部,求m的取值范围.
(3)若点P在直线AB上,已知点R(,
),S(
,
)在直线y=kx+b上,b>2,
+
=mb,
+
=kb+4若
>
,判断
与
的大小关系
25、如图,分别延长▱ABCD的边AB、CD至点E、点F,连接CE、AF,其中∠E=∠F.求证:四边形AECF为平行四边形.