1、已知二次函数y= 2x2+8x-1的图象上有点A(-2,y1),B(-5,y2),C(-1,y3),则y1、y2、y3的大小关系为( )
A. B.
C.
D.
2、如图,把一个长方形的纸片对折两次,然后剪下一个角,为了得到一个钝角为 的菱形,剪口与折痕所成的角的度数为( )
A. B.
C. D.
3、如图,AC⊥BD,∠1=∠2,∠D=40°,则∠BAD的度数是( )
A.85°
B.90°
C.95°
D.100°
4、小明骑自行车到公园游玩,匀速行驶一段路程后,开始休息,休息了一段时间后,为了尽快赶到目的地,便提高了,车速度,很快到达了公园.下面能反映小明离公园的距离(千米)与时间
(小时)之间的函数关系的大致图象是()
A.
B.
C.
D.
5、一枝蜡烛长20厘米,点燃后每小时燃烧掉5厘米,则下列3幅图象中能大致刻画出这支蜡烛点燃后剩下的长度h(厘米)与点燃时间t之间的函数关系的是( ).
A. B.
C.
6、如果关于的一元一次方程
有实数根,那么
的取值范围是( )
A. B.
C.
D.
7、若关于的一元二次方程
的常数项为0,则
的值等于( )
A. 1 B. 3 C. 1或3 D. 0
8、如图,在平面直角坐标系中,点 A1、A2、A3、A4、A5、A6 的坐标依次为 A1(0,1), A2(1,1),A3(1,0),A4(2,0),A5(2,1),A6(3,1),…按此规律排列,则点 A2020的坐标是( )
A.(1009,1)
B.(1009,0)
C.(1010,1)
D.(1010,0)
9、如图,在中,点E为边DC上一点,连接AE,将
沿AE翻折,点D的对应点
落在边AB上,
,
,则边BC的长是( )
A.5
B.6
C.7
D.8
10、如图①,现有边长为和
的正方形纸片各一张,长和宽分别为
,
的长方形纸片一张,其中
.把纸片Ⅰ,Ⅲ按图②所示的方式放入纸片Ⅱ内,已知图②中阴影部分的面积满足
,则
,
满足的关系式为( )
A.
B.
C.
D.
11、已知关于x的一元一次不等式组有解,则直线y=﹣x+b不经过第________ 象限.
12、如图,P为线段AB上的一个点,分别以AP,PB为边在AB的同侧作菱形APCD和菱形PBFE,点P,C,E在一条直线上。若∠DAP=60°,AP2+3PB2=1, M,N分别是对角线AC,BE的中点. MN长为 ( )
A. B.
C. 1 D. 4
13、如图,有一圆柱体,它的高为8cm,底面周长为12cm.在圆柱的下底面点处有一个蜘蛛,它想吃到上底面上与
点相对的
点处的苍蝇,需要爬行的 最短路径是 cm .
14、已知点在第四象限,且到
轴的距离是3,到
轴的距离是2,则点
的坐标为_________.
15、在平面直角坐标系xOy中,点A、B的坐标分别为(3,0)、(0,4).以点A为圆心,AB长为半径画弧,与x轴交于点C,则点C的坐标为_____.
16、如图,要测量B,C两地的距离,小明想出一个方法:在池塘外取点A,得到线段AB、AC,并取AB、AC的中点D、E,连结DE.小明测得DE的长为a米,则B、C两地的距离为_____米.
17、写一个无理数,使它与的积是有理数:________。
18、计算:
19、在平行四边形中,在对角线
上取不同的两点
(点B、E、F、D依次排列),下列条件中,能得出四边形
一定为平行四边形的是_____________.(A. BE=DF;B. AE=CF C. AE∥CF;D. ∠BAE=∠DCF)
20、如图,在矩形中,
,点
是
边上的中点,点
是
边上的动点.将
沿AE折叠,点
落在点
处;将
沿
折叠,点
落在点
处.当
的长度为__________时,点
与点
能重合.
21、为了解某校八年级学生每周平均课外阅读时间的情况,随机抽查了该校八年级部分学生,对其每周平均课外阅读时间进行统计,根据统计数据绘制成如图的两幅尚不完整的统计图:
(1)本次共抽取了多少人?并请将图1的条形图补充完整;
(2)这组数据的众数是________;求出这组数据的平均数;
(3)若全校有1500人,请你估计每周平均课外阅读时间为3小时的学生多少人?
22、先化简,再求值:,其中x=2021.
23、如图1,△ABC是等腰直角三角形,∠A=90°,BC=4cm,点P在△ABC的边上沿路径B→A→C移动,过点P作PD⊥BC于点D,设BD=xcm,△BDP的面积为ycm2(当点P与点B或点C重合时,y的值为0).
小东根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究.
下面是小东的探究过程,请补充完整:
(1)自变量x的取值范围是______;
(2)通过取点、画图、测量,得到了x与y的几组值,如下表:
x/cm | 0 | 1 | 2 | 3 | 4 | ||||
y/cm2 | 0 | m | 2 | n | 0 |
请直接写出m=_____,n=_____;
(3)如图2,在平面直角坐标系xOy中,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;
(4)结合画出的函数图象,解决问题:当△BDP的面积为1cm2时,BD的长度约为_____cm.(数值保留一位小数)
24、如图,直线y=kx+6与x轴、y轴分别交于点E,F,点E的坐标为(﹣8,0),点A的坐标为(﹣6,0)
(1)求k的值;
(2)若点P(x,y)是第二象限内的直线上的一个动点,在点P的运动过程中,试写出△OPA的面积S与x的函数关系式,并写出自变量x的取值范围;
(3)在(2)的条件下,探究:当点P运动到什么位置时,△OPA的面积为,并说明理由;
(4)问在x轴上是否存在点Q,使得△EFQ为等腰三角形?若存在,求出符合条件的Q的坐标;若不存在,请说明理由.
25、计算:
(1)
(2)
(3)
(4)