1、如图Rt△ABC中,∠ACB=90°,∠A=50°,将其折叠,使点A落在边CB上A′处,折痕为CD,则∠A ′DB的度数为( )
A. 30° B. 20° C. 10° D. 40°
2、一次函数y=mx+n与正比例函数y=mnx(m、n是常数且mn≠0)图象是( )
A. B.
C.
D.
3、直线与x轴的交点是
,则k的值是( )
A.3
B.2
C.
D.
4、下列一次函数中,随
的增大而减小的是( )
A.
B.
C.
D.
5、疫情无情人有情,爱心捐款传真情.新冠肺炎疫情发生后,某班学生积极参加献爱心活动,该班40名学生的捐款统计情况如下表,关于捐款金额,下列说法错误的是( )
金额/元 | 10 | 20 | 30 | 50 | 100 |
人数 | 2 | 18 | 10 | 8 | 2 |
A.平均数为32元
B.众数为20元
C.中位数为20元
D.方差为386
6、某不等式组中的两个不等式的解集在数轴上表示如图,则该不等式组的解集为( )
A.x<4
B.x<2
C.x≤2
D.2≤x<4
7、已知平行四边形ABCD的周长为56,AB=12,则BC的长为( )
A.4 B.16 C.18 D.24
8、要使分式有意义,x应满足的条件是( )
A.
B.
C.
D.
9、三条公路将、
、
三个村庄连成一个如图的三角形区域,如果在这个区域内修建一个公园,要使公园到三条公路的距离相等,那么这个公园应建的位置是( )
A.三条高线的交点
B.三条中线的交点
C.三条角平分线的交点
D.三边垂直平分线的交点
10、一个四边形的三个相邻内角度数依次如下,那么其中是平行四边形的是( )
A.88°,108°,88°
B.88°,104°,108°
C.88°,92°, 92°
D.88°,92°,88°
11、在中,若
,则
_____________
12、比较大小:__________
.(用不等号连接)
13、若等腰三角形的一个内角的度数为48°,则其顶角的度数为_____.
14、若,化简
__________.
15、在4个不透明的袋子中分别装有10个球,其中,1号袋中有10个红球,2号袋中有8个红球.2个白球,3号袋中有5个红球.5个白球,4号袋中有2个红球,8个白球.从各个袋子中任意摸出1个球,摸到白球的可能性最大的是_____(填袋子号).
16、在等腰△ABC中,三边分别为a,b,c,其中a=2,若关于x的方程x2+(b﹣1)x+b﹣1=0有两个相等的实数根,则△ABC的周长是___.
17、某校要从甲、乙两名跳远运动员挑选一人参加校际比赛.在十次选拔比赛中,他们的方差分别为S甲2=0.32,S乙2=0.26,则应选________参加这项比赛(填“甲”或者“乙”)
18、已知整数x、y满足+3
=
,则
的值是______.
19、在代数式,
,
,
,
中,是分式的有______个.
20、若,则
的值为___________.
21、已知抛物线的顶点为(2,﹣1),且过(1,0)点.
(1)求抛物线的解析式;
(2)在坐标系中画出此抛物线;
22、如图,在正方形ABCD中,O是对角线AC与BD的交点,M是BC边上的动点(点M不与B、C重合),CN⊥DM,CN与AB交于点N,连接OM、ON、MN.下列四个结论:①△CNB≌△DMC;②△CON≌△DOM;③AN2+CM2=MN2;④若AB=2,则S△OMN的最小值是.其中正确结论的个数是( )
A.1 B.2 C.3 D.4
23、如图,△ABC中,A(﹣1,1),B(﹣4,2),C(﹣3,4).
(1)在网格中画出△ABC向右平移5个单位后的图形△A1B1C1;
(2)在网格中画出△ABC关于原点O成中心对称后的图形△A2B2C2;
(3)在x轴上找一点P使PA+PB的值最小请直接写出点P的坐标.
24、解方程:
25、如图,在四边形ABCD中,AB=CD,E、F、G、H分别为AD、BC、BD、AC的中点,顺次连接E、G、F、H.
(1)猜想四边形EGFH是什么特殊的四边形,并说明理由;
(2)当∠ABC与∠DCB满足什么关系时,四边形EGFH为正方形,并说明理由;
(3)猜想:∠GFH、∠ABC、∠DCB三个角之间的关系.直接写出结果____________.