1、二次函数的图象的顶点坐标是( )
A.(1,3) B.(,3) C.(1,
) D.(
,
)
2、如果关于的分式方程
有整数解,且二次函数
的图象与
轴有交点,那么符合条件的所有整数
的个数有( )
A.2个
B.3个
C.4个
D.5个
3、下列图形中既是轴对称图形,又是中心对称图形的是( )
A.
B.
C.
D.
4、点P1(﹣2,y1),P2(2,y2),P3(4,y3)均在二次函数y=﹣x2+2x+c的图象上,则y1,y2,y3的大小关系是( )
A.y2>y3>y1
B.y2>y1=y3
C.y1=y3>y2
D.y1=y2>y3
5、如图,某个反比例函数的图象经过点P,则它的解析式为( )
A.y=(x>0) B.y=
(x>0)
C.y=(x<0) D.y=
(x<0)
6、如图,点P是⊙O外一点,PA交⊙O于点C,A,PB交⊙O于点D,B,若,
,则
的度数为( )
A.10°
B.12°
C.14°
D.20°
7、如图是抛物线y=ax2+bx+c(a≠0)的部分图象,其顶点坐标为(1,n),且与x轴的一个交点在点(3,0)和(4,0)之间,则下列结论:①a-b+c>0;②3a+b=0;③b2=4a(c-n);④一元二次方程 ax2+bx+c=n-1有两个互异实根.其中正确结论的个数是( )
A.1 个
B.2 个
C.3 个
D.4 个
8、k、m、n为三整数,若,则下列有关于k、m、n的大小关系,正确的是( )
A. k<m=n B. m=n<k C. m<n<k D. m<k<n
9、如图,已知正方形ABCD的边长为5,点E、F分别在AD、DC上,AE=DF=2,BE与AF相交于点G,点H为BF的中点,连接GH,则GH的长为( )
A.2 B.
C.4
D.
10、在△ABC中,∠C=90°,tanA=,那么sinA的值是( )
A. B.
C.
D.
11、如图,DE∥BC,DF=2,FC=4,那么=__________.
12、将一元二次方程(x+1)(x+2)=0化成一般形式后是___________________.
13、若关于x的一元二次方程有实数根,则k的取值范围是___________.
14、若最简二次根式与
是同类二次根式,则a=_______.
15、若抛物线与直线
的公共点的坐标是(1,4),(5,4),则这条抛物线的对称轴是直线____________.
16、如图,△ABC中,AC=8,AB=10,△ABC的面积为30,AD平分∠BAC,F、E分别为AC、AD上两动点,连接CE、EF,则CE+EF的最小值为_______
17、计算:.
18、直线与
轴相交于
点,与
轴相交于
点,直线
与直线
相交于
点.
(1)请说明经过点(4,2);
(2)时,点
是直线
上一点且在
轴的右侧,若
,求点
的坐标;
(3)若点在第三象限,求
的取值范围.
19、先化简,再求值:,其中
.
20、计算;(1)解下列不等式组,并把解集在数轴上表示出来.
(2)用配方法解一元二次方程:.
21、在四边形中,对角线
、
相交于点
,将
绕点
按逆时针方向旋转得到
,旋转角为θ(0°<θ<90°),连接
、
,
与
交于点
.
(1)如图1,若四边形是正方形.
①求证:≌
.
②请直接写出与
的位置关系.
(2)如图2,若四边形是菱形,
,
,设
.判断
与
的位置关系,说明理由,并求出
的值.
(3)如图3,若四边形是平行四边形,
,
,连接
,设
.请直接写出
的值和
的值.
22、如图,在中,
,O为AC上一点,以点O为圆心,OC为半径的圆恰好与AB相切,切点为D,
与AC的另一个交点为E.
(1)求证:BO平分;
(2)若,
,求BO的长.
23、如图,在平面直角坐标系中,抛物线与x轴交于
和点
,与y轴交于点C,点C和点D是抛物线上的一对对称点,连接
.
(1)求该抛物线的解析式;
(2)若点P为直线上方抛物线上一点,连接DP,BP,求四边形
面积的最大值及此时点P的坐标;
(3)将抛物线沿着射线方向平移得新抛物线
正好过点B,点M为新抛物线对称轴上一点,点N为原抛物线上一点,使得以A、C、M、N为顶点的四边形为平行四边形,写出所有符合条件的点N的坐标,并写出求解点N的坐标的其中一种情况的过程.
24、2022年暑期,我区遭遇连续高温和干旱,一居民小区的部分绿化树枯死.小区物业管理公司决定补种绿化树,计划购买小叶榕和香樟共50棵进行栽种.其中小叶榕每棵680元,香樟每棵1000元,经测算,购买两种树共需38800元.
(1)原计划购买小叶榕、香樟各多少棵?
(2)实际购买时,经物业管理公司与商家协商,每棵小叶榕和香樟的售价均下降元(
),且两种树的售价每降低10元,物业管理公司将在原计划的基础上多购买小叶榕2棵,香樟1棵.物业管理公司实际购买的费用比原计划多3600元,求物业管理公司实际购买两种树共多少棵?