1、如图所示,轻绳MN的两端固定在水平天花板上,物体m1通过另一段轻绳系在轻绳MN的某处,光滑轻滑轮跨在轻绳MN上,可通过其下边的一段轻绳与物体m2一起沿MN自由移动。系统静止时轻绳MN左端与水平方向的夹角为60°,右端与水平方向的夹角为30°。则物体m1与m2的质量之比为( )
A.1:1
B.1:2
C.
D.
2、工地上甲、乙两人用如图所示的方法将带挂钩的重物抬起。不可伸长的轻绳两端分别固定于刚性直杆上的A、B两点,轻绳长度大于A、B两点间的距离。现将挂钩挂在轻绳上,乙站直后将杆的一端搭在肩上并保持不动,甲蹲下后将杆的另一端搭在肩上,此时物体刚要离开地面,然后甲缓慢站起至站直。已知甲的身高比乙高,不计挂钩与绳之间的摩擦。在甲缓慢站起至站直的过程中,下列说法正确的是( )
A.轻绳的张力大小一直不变
B.轻绳的张力先变大后变小
C.轻绳的张力先变小后变大
D.轻绳对挂钩的作用力先变大后变小
3、中国科学院紫金山天文台近地天体望远镜发现了一颗近地小行星,这颗近地小行星直径约为40m。已知地球半径约为6400km,若该小行星与地球的第一宇宙速度之比约为,则该行星和地球质量之比的数量级为( )
A.10-15
B.10-16
C.10-17
D.10-18
4、如图甲所示,某汽车大灯距水平地面的高度为81cm,该大灯结构的简化图如图乙所示。现有一束光从焦点处射出,经旋转抛物面反射后,垂直半球透镜的竖直直径AB从C点射入透镜。已知透镜直径远小于大灯离地面高度,,半球透镜的折射率为
,tan15°≈0.27,则这束光照射到地面的位置与大灯间的水平距离为( )
A.3m
B.15m
C.30m
D.45m
5、在A、B两点放置电荷量分别为和
的点电荷,其形成的电场线分布如图所示,C为A、B连线的中点,D是
连线的中垂线上的另一点。则下列说法正确的是( )
A.
B.C点的电势高于D点的电势
C.若将一正电荷从C点移到无穷远点,电场力做负功
D.若将另一负电荷从C点移到D点,电荷电势能减小
6、如图甲所示,某同学利用橡皮筋悬挂手机的方法模拟蹦极运动,并利用手机的加速度传感器研究加速度随时间变化的图像,如图乙所示。手机保持静止时,图像显示的加速度值为0,自由下落时,图像显示的加速度值约为-10m/s2,忽略空气阻力,下列说法正确的是( )
A.时,手机已下降了约1.8m
B.时,手机正向上加速运动
C.加速度约为70m/s2时,手机速度为0
D.时间内,橡皮筋的拉力逐渐减小
7、如图为溜溜球示意图,A、B为细线末端,溜溜球转轴O置于细线上并水平静止在空中,细线不可伸长,不计摩擦,整个装置在同一竖直平面内。若移动A端,并保持B端位置不动,下列说法正确的是( )
A.A端缓慢水平右移过程中,细线的弹力大小不变
B.A端缓慢水平左移过程中,细线的弹力大小将变小
C.A端缓慢竖直上提过程中,细线的弹力大小将变大
D.A端缓慢竖直下移过程中,细线的弹力大小不变
8、放射性元素钚()是重要的核原料,其半衰期为88年,一个静止的钚238衰变时放出α粒子和γ光子,生成原子核X,已知钚238、α粒子和原子核X的质量分别为
、
、
,普朗克常量为
,真空中的光速为c,则下列说法正确的是( )
A.X的比结合能比钚238的比结合能小
B.将钚238用铅盒密封,可减缓其衰变速度
C.钚238衰变时放出的γ光子具有能量,但是没有动量
D.钚238衰变放出的γ光子的频率小于
9、如图所示,将悬挂在O点的铜球从方形匀强磁场区域左侧一定高度处由静止释放,磁场区域的左右边界处于竖直方向,不考虑空气阻力,则( )
A.铜球在左右两侧摆起的最大高度相同
B.铜球最终将静止在O点正下方
C.铜球运动到最低点时受到的安培力最大
D.铜球向右进入磁场的过程中,受到的安培力方向水平向左
10、汽车自动控制刹车系统(ABS)的原理如图所示.铁质齿轮P与车轮同步转动,右端有一个绕有线圈的磁体(极性如图),M是一个电流检测器.当车轮带动齿轮P转动时,靠近线圈的铁齿被磁化,使通过线圈的磁通量增大,铁齿离开线圈时又使磁通量减小,从而能使线圈中产生感应电流,感应电流经电子装置放大后即能实现自动控制刹车.齿轮从图示位置开始转到下一个铁齿正对线圈的过程中,通过M的感应电流的方向是( )
A.总是从左向右
B.总是从右向左
C.先从右向左,然后从左向右
D.先从左向右,然后从右向左
11、如图所示,某工厂生产的卷纸缠绕在中心轴上,卷纸的直径为d,轴及卷纸的总质量为m。用细绳分别系在轴上的P、Q点,将卷纸通过细绳挂在光滑竖直墙壁上的O点,已知,重力加速度的大小为g。则下列说法正确的是( )
A.每根绳的拉力大小
B.每根绳的拉力大小
C.卷纸对墙的压力大小
D.卷纸对墙的压力大小
12、如图甲所示,在粗糙绝缘水平面的A、C两处分别固定两个点电荷,A、C的位置坐标分别为-3L和2L,已知C处电荷的电荷量为4Q,图乙是AC连线之间的电势φ与位置坐标x的关系图像,图中x=0点为图线的最低点,x=-2L处的纵坐标,x=L处的纵坐标
,若在x=-2L的B点,由静止释放一个可视为质点的质量为m,电荷量为q的带电物块,物块随即向右运动,物块到达L处速度恰好为零,则下列说法正确的是( )
A.A处电荷带正电,电荷量为9Q,小物块与水平面间的动摩擦因数
B.A处电荷带负电,电荷量为6Q,小物块与水平面间的动摩擦因数
C.A处电荷带正电,电荷量为9Q,小物块与水平面间的动摩擦因数
D.A处电荷带负电,电荷量为6Q,小物块与水平面间的动摩擦因数
13、质量为m的小明坐在秋千上摆动到最高点时的照片如图所示,对该时刻,下列说法正确的是( )
A.秋千对小明的作用力小于
B.秋千对小明的作用力大于
C.小明的速度为零,所受合力为零
D.小明的加速度为零,所受合力为零
14、我们可以用“F=-F'”表示某一物理规律,该规律是( )
A.牛顿第一定律
B.牛顿第二定律
C.牛顿第三定律
D.万有引力定律
15、如图所示,P、M、N为三个透明平板,M与P的夹角略小于N与P的夹角
,一束平行光垂直P的上表面入射,下列干涉条纹的图像可能正确的是( )
A.
B.
C.
D.
16、《流浪地球2》影片中,太空电梯高耸入云,在地表与太空间高速穿梭。太空电梯上升到某高度时,质量为2.5kg的物体重力为16N。已知地球半径为6371km,不考虑地球自转,则此时太空电梯距离地面的高度约为( )
A.1593km
B.3584km
C.7964km
D.9955km
17、如图所示,竖直平面内半径的圆弧AO与半径
的圆弧BO在最低点C相切。两段光滑的直轨道的一端在O点平滑连接,另一端分别在两圆弧上且等高。一个小球从左侧直轨道的最高点A由静止开始沿直轨道下滑,经过O点后沿右侧直轨道上滑至最高点B,不考虑小球在O点的机械能损失,重力加速度g取10m/s。则在此过程中小球运动的时间为( )
A.1.5 s
B.2.0 s
C.3.0 s
D.3.5 s
18、一列沿x轴正方向传播的简谐横波,在t=0时刻的波形图如图所示,波源的振动周期T=1s, P、Q为介质中的两质点。下列说法正确的是( )
A.该简谐波的波速大小为2 m/s
B.t=0时刻,P、Q的速度相同
C.t=0.125s时,P到达波峰位置
D.t=0.5s时, P点在t=0时刻的运动状态传到Q点
19、A、B两小球分别从图示位置被水平抛出,落地点在同一点M,B球抛出点离地面高度为h,与落点M水平距离为x,A球抛出点离地面高度为,与落点M水平距离为
,忽略空气阻力,重力加速度为g,关于A、B两小球的说法正确的是( )
A.A球的初速度是B球初速度的两倍
B.要想A、B两球同时到达M点,A球应先抛出的时间是
C.A、B两小球到达M点时速度方向一定相同
D.B球的初速度大小为
20、如图所示,两个半径不等的均匀带电圆环P、Q带电荷量相等,P环的半径大于Q环的,P带正电,Q带负电。两圆环圆心均在O点,固定在空间直角坐标系中的yOz平面上。a、b在x轴上,到O点的距离相等,c在y轴上,到O点的距离小于Q环的半径。取无限远处电势为零,则( )
A.O点场强不为零
B.a、b两点场强相同
C.电子从c处运动到a处静电力做功与路径无关
D.电子沿x轴从a到b,电场力先做正功后做负功
21、如图,一弹簧振子沿x轴做简谐运动,振子零时刻向右经过A点,2s时第一次到达B点,已知振子经过A、B两点时的速度大小相等,2s内经过的路程为0.6m,则该简谐运动的周期为___________s,振幅为___________m。
22、一列简谐横波在某时刻的波形图如图所示,已知图中质点b的起振时刻比质点a延迟了0.5s,b和d之间的距离是5m,则该时刻图中质点c的振动方向为_______,波的传播速度为___________。
23、如图甲所示,在x轴上的O、A两点放两个波源,x轴上A点右侧的P点为监测点,两波源的振动图像均如图乙所示,产生沿x轴正方向传播、波长λ=2m的简谐横波,则该波的波速为_______m/s;若监测点P不振动,O、A两点间的最小距离为_______m。
24、一简谐横波沿轴正方向传播,图甲是
时刻的波形图,
、
是波上的两个质点。则图乙表示这两点中质点________的振动图像;质点
在
内振动的路程为________
。
25、如图为某简谐横波的图像,实线表示时刻的波形图,虚线表示
时刻的波形图。已知该波的波速是8m/s,则:该波的周期是__________s;该波沿__________方向传播。
26、某电场的电场线分布如图中实线所示,一带电粒子仅在电场力作用下沿虚线运动,先后经过A、B两点。则该粒子在A、 B两点的加速度大小为aA______aB,在A、B两点的电势能为εA______εB。(均选填“>”或“<”)
27、某研究性学习小组到实验室做“测电源的电动势和内阻”的实验,实验室提供了以下器材:
A.待测电源(电动势约为3V,内阻约为2Ω)
B.定值电阻R0(阻值约为3Ω)
C.两块电压表(内阻很大,有3V、15V两个量程)
D.电流表(内阻很小,有0.6A、3A两个量程)
E.滑动变阻器R(0~20Ω)
F.开关一个,导线若干
(1)该小组的甲同学想在完成实验“测电源的电动势和内阻”的同时测出定值电阻R0的阻值,故设计了如图1所示的电路;乙同学根据甲同学设计的电路图,进行了实物连接,如图2所示。实物连接图中不恰当的地方有多处,请指出其中三处①___________,②___________,③___________。
(2)修正了问题后,继续实验;实验时用U1、U2、I分别表示电表V1、V2、A的读数。将滑动变阻器的滑片移动到不同位置,记录一系列U1、U2、I的值。其后在两张坐标纸上各作一个图线来处理实验数据,分别用来计算电源的电动势、内阻以及定值电阻R0的阻值。用来计算电源的电动势和内阻的图线的纵轴坐标用I表示,横轴坐标应该用___________表示;用来计算定值电阻R0的图线的横轴坐标用I表示,纵轴坐标应该用___________表示。
(3)若实验中的所有操作和数据处理无错误,在不考虑偶然误差的情况下,实验中测得的定值电阻R0的值___________(填“大于”“小于”或“等于”)真实值。
28、一种发光装置是由半径为R的半球体透明介质和发光管芯组成的,管芯发光部分MN是一个圆心与半球体介质球心O重合的圆面。其纵截面如图所示,,MN上的E点发出的一条光线经D点的折射光线平行OB,已知
,圆弧AD长
,求:
(1)该透明介质折射率;
(2)沿EB方向的光线从半球面射出时的折射角的正弦值;
(3)为使从管芯射向半球面上的所有光线都不会发生全反射,MN的半径需要满足什么条件。
29、如图甲所示,一质量的小物块从斜面底端,以一定的初速度冲上倾角为
的足够长固定斜面,某同学利用位移传感器测出了冲上斜面过程中的小物块到传感器的距离,并用计算机画出了小物块上滑过程的位移—时间图线如图乙所示。(取
,
,
)求:
(1)小物块冲上斜面过程中加速度的大小;
(2)小物块与斜面间的动摩擦因数;
(3)小物块在斜面上运动的时间。
30、某科研小组设计了一个粒子探测装置。如图甲所示,一个截面半径为R的圆筒(筒长大于2R)水平固定放置,筒内分布着垂直于轴线的水平方向匀强磁场,磁感应强度大小为B。图乙为圆筒的入射截面,图丙为竖直方向过筒轴的切面。质量为m、电荷量为q的正离子以不同的初速度垂直于入射截面射入筒内。圆筒内壁布满探测器,可记录粒子到达筒壁的位置。筒壁上的P点和Q点与入射面的距离分别为R和2R。(离子碰到探测器即被吸收,忽略离子间的相互作用)
(1)离子从O点垂直射入,偏转后到达P点,求该入射离子的速度v0;
(2)离子从OC线上垂直射入,求位于Q点处的探测器接收到的离子的入射速度范围;
(3)若离子以第(2)问求得范围内的速度垂直入射,从入射截面的特定区域入射的离子偏转后仍能到达距入射面为2R的筒壁位置,画出此入射区域的形状并求其面积。
31、如图所示,水平面上方左侧有一垂直水平面向下的匀强磁场,边长为L的正方形金属线框平放在水平面上,且bc边与磁场边界
重合。现对线框施加垂直于
水平方向大小为F的恒力使线框由静止开始运动,在线框的ad与磁场边界
重合前线框已开始匀速运动且速度为v,已知线框的质量为m、电阻为R,线框与水平面间的动摩擦因数为
,重力加速度为g,求:
(1)线框加速度的最大值多大;
(2)磁场的磁感应强度多大?
32、物块A的质量为2.0kg,放在水平面上,在水平力F作用下由静止开始做直线运动,水平力F随物块的位移s变化的规律如图所示。最后物块停在距出发点28m处。
⑴试分段说明物块A的运动情况及加速度情况。
⑵求物块开始运动后5s末的动量。