微信扫一扫
随时随地学习
当前位置 :

2025-2026学年(上)丽水七年级质量检测数学

考试时间: 90分钟 满分: 160
题号
评分
*注意事项:
1、填写答题卡的内容用2B铅笔填写
2、提前 xx 分钟收取答题卡
第Ⅰ卷 客观题
第Ⅰ卷的注释
一、选择题 (共20题,共 100分)
  • 1、已知,满足,则p与q的关系为(   

    A.

    B.

    C.

    D.

  • 2、欧洲数学家雅各布伯努利收到一位朋友的来信,打开一看信不是写给他的,但是信封上的地址、姓名又没有问题,觉得很奇怪.过了几天,他收到了这位朋友的道歉信.这位朋友在信中向他解释说:写了五封信,又写好了五个信封,然后让仆人把信寄出,可是那位仆人在把信装到信封里时居然把它们全部都装错了看完信后他不禁哈哈大笑.不过他马上想到了一个问题:五封信装入写有不同地址和姓名的五个信封,全部装错的可能性有( )种?

    A.42

    B.44

    C.48

    D.96

  • 3、为了得到函数的图像,只需把函数的图像

    A向左平行移动个单位

    B向右平行移动个单位

    C向左平行移动个单位

    D向右平行移动个单位

     

  • 4、下列图象可以作为函数的图象的有                           

    A.1个

    B.2个

    C.3个

    D.4个

  • 5、已知为奇函数,当时,,当,若关于的不等式有解,则实数的取值范围为(  

    A. B.

    C. D.

  • 6、是非零向量,则“存在实数λ,使得”是“”的 (       

    A.充分必要条件

    B.充分而不必要条件

    C.必要而不充分条件

    D.既不充分也不必要条件

  • 7、给出下列说法:

    不等于2的所有偶数可以组成一个集合;

    高一年级的所有高个子同学可以组成一个集合;

    {1,2,3,}与{2,3,1}是不同的集合;

    2016年里约奥约会比赛项目可以组成一个集合.

    其中正确的个数是:

    A. 0 B. 1   C. 2 D. 3

     

  • 8、若函数处取得极值,则常数的值为(   

    A.21

    B.-21

    C.27

    D.-27

  • 9、函数的定义域是(  

    A. B.

    C. D.

  • 10、设函数,则当x>0,表达式的展开式中常数项为

    A.-20 B.20 C.-15 D.15

  • 11、如图,格纸上正方形小格的边长为1,图中粗线画出的是某三棱锥的三视图,则该三棱锥的外接球的表面积为

    A.

    B.

    C.

    D.

  • 12、已知双曲线分别是双曲线C的左右焦点,且.过点作双曲线C的一条渐近线的垂线,垂足为P,若的面积取最大值时,双曲线C的离心率为(  

    A.3 B. C.2 D.

  • 13、对任意正整数,定义的双阶乘如下:当为偶数时,;当为奇数时,.现有四个命题:①;②;③个位数为;④个位数为.其中正确的个数为(     

    A.

    B.

    C.

    D.

  • 14、已知为虚数单位,则的虚部为(       

    A.

    B.

    C.

    D.

  • 15、椭圆的一个焦点坐标是(       )

    A.

    B.

    C.

    D.

  • 16、如图,为椭圆的长轴的左、右端点,为坐标原点,为椭圆上不同于的三点,直线围成一个平行四边形,则(   )

    A. 5   B.   C. 9   D. 14

     

  • 17、已知集合,则的真子集个数为(       

    A.

    B.

    C.

    D.

  • 18、已知函数上单调递减,则实数的取值范围是()

    A.  B.  C.  D.

  • 19、已知,则的值为( )

    A.

    B.

    C.

    D.

  • 20、设变量满足约束条件,则目标函数的最小值是(  )

    A.-5

    B.1

    C.2

    D.7

二、填空题 (共6题,共 30分)
  • 21、若复数满足方程,且在复平面内对应的点位于第一象限,则________.

  • 22、正实数满足:,则当取最小值时,___________.

  • 23、已知,则的大小关系是______.(用“”连接)

  • 24、某同学大学毕业后,决定利用所学专业进行自主创业,经过市场调查,生产一小型电子产品需投入固定成本2万元,每生产x万件,需另投入流动成本万元,当年产量小于7万件时,(万元),当年产量不小于7万件时,(万元).已知每件产品售价为6元,若该同学生产的产品当年全部售完,该同学的这一产品所获年利润最大值是______(万元).(注:年利润=年销售收入-固定成本-流动成本)

  • 25、在平面直角坐标系中,以点为圆心且与直线相切的所有圆中,半径最大的圆的标准方程为__________

     

  • 26、已知二面角的大小为130°,两条异面直线ab满足,且,则ab所成角的大小为___________.

三、解答题 (共6题,共 30分)
  • 27、选修4-5:不等式选讲

    已知函数,且不等式的解集为 .

    (1)求的值;

    (2)对任意实数,都有成立,求实数的最大值.

     

  • 28、已知点和向量

    (1)若,求点B的坐标;

    (2)若x轴上的一点C满足,求AC的长.

  • 29、已知在平面直角坐标系中,直线的参数方程为为参数),以坐标原点为极点,轴的正半轴为极轴,建立极坐标系,曲线的极坐标方程为,点的极坐标为.

    (1)求直线的极坐标方程以及曲线的直角坐标方程;

    (2)记为直线与曲线的一个交点,其中,求的面积.

  • 30、已知.

    1)当时,以为切点作曲线的切线,求切线的方程;

    2)若存在,使成立,求的取值范围.

  • 31、设函数 .

    (1)若是从五个数中任取的一个数,是从三个数中任取的一个数,求函数无零点的概率;

    (2)若是从区间任取的一个数,是从区间任取的一个数,求函数无零点的概率.

  • 32、已知圆关于直线对称且过点,直线的方程为:.

    1)证明:直线与圆相交;

    2)记直线与圆的两个交点为.

    ①若弦长,求实数的值;

    ②求面积的最大值及面积的最大时的值.

查看答案
下载试卷
得分 160
题数 32

类型 高考模拟
第Ⅰ卷 客观题
一、选择题
二、填空题
三、解答题
PC端 | 移动端 | mip端
字典网(zidianwang.com)汇总了汉语字典,新华字典,成语字典,组词,词语,在线查字典,中文字典,英汉字典,在线字典,康熙字典等等,是学生查询学习资料的好帮手,是老师教学的好助手。
声明:本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
电话:  邮箱:
Copyright©2009-2021 字典网 zidianwang.com 版权所有 闽ICP备20008127号-7
lyric 頭條新聞