1、已知两个一次函数y=3x+b1和y=-3x+b2若b1<b2<0,则它们图象的交点在( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
2、下列各点中,在函数y=-图象上的是( )
A.
B.
C.
D.
3、如图是函数的图象,直线
轴且过点
,将该函数在直线l上方的图象沿直线l向下翻折,在直线1下方的图象保持不变,得到一个新图象.若新图象对应的函数的最大值与最小值之差不大于5,则m的取值范围是( )
A.
B.
C.
D.或
4、下列五个数:-3,1,,
,其中最小的数是( )
A. B.1 C.
D.
5、如图,直线,点B在直线b上,且
,
,那么
的度数是( )
A.
B.
C.
D.
6、如图,正方形OABC的边长为6,D为AB中点,OB交CD于点Q,Q是y=上一点,k的值是( )
A.4 B.8 C.16 D.24
7、点(﹣2,3)关于y轴的对称点的坐标为( )
A.(﹣2,﹣3) B.(2,3) C.(﹣2,3) D.(2,﹣3)
8、16的平方根是( )
A.±4 B.4 C.±2 D.2
9、计算的结果是( )
A. B.
C.
D.
10、两个相似三角形的相似比为1:2,较小三角形的面积为1,则较大三角形的面积为( )
A. 8 B. 4 C. 2 D.
11、如图,在中,点
在
上,
,若
与
相交于点
,
,则
的长为__________.
12、小明参加某企业招聘,笔试、面试、操作技能得分分别为92分、88分、90分,按笔试占30%、面试占20%、操作技能占50%计算最终成绩,则小明的最终成绩是______分.
13、分解因式:9a3﹣ab2=_____.
14、一辆宽为2 m的货车要通过跨度为8 m,拱高为4 m的截面为抛物线的单行隧道(从正中间通过),抛物线满足关系式y=-x2+4.为保证安全,车顶离隧道至少要有0.5 m的距离,则货车的限高应为________.
15、如图,在正方形ABCD中,对角线AC,BD相交于点O,E是OB的中点,连接AE并延长交BC于点F.若△BEF的面积为1,则△AED的面积为____.
16、如图所示的正方形网格中,是网格线交点,若
与
所在圆的圆心都为点O,则
与
的长度之比为_____.
17、先将代数式进行化简,然后请你选择一个合适
的值,并求代数式的值.
18、甲、乙两人要某风景区游玩,每天某一时段开往该景区有三辆汽车(票价相同),但是他们不清楚这三辆车的舒适程度,也不知道汽车开来的顺序,两人采用了不同的乘车方案:
甲无论如何总是上开来的第一辆车,而乙则是先观察后上车,当第一辆车开来时,他不上车,而是仔细观察车辆的舒适状况,如果第二辆车状况比第一辆好,他就上第二辆车,如果第二辆不比第一辆好,他就上第三辆车.这三辆车的舒适程度为上、中、下三等,请解决下面的问题:
(1)请用画树形图或列表的方法分析这三辆车出现的先后顺序,写出所有可能的结果;(用上中下表示)
(2)分析甲、乙两人采用的方案,谁的方案使自己坐上上等车的可能性大,说明理由.
19、如图,在Rt△ABC中,∠A=90°,AB=AC=4.一动点P从点B出发,沿BC方向以每秒1个单位长度的速度匀速运动,到达点C即停止,在整个运动过程中,过点P作PD⊥BC与Rt△ABC的直角边相交于点D,延长PD至点Q,使得PD=QD,以PQ为斜边在PQ左侧作等腰直角三角形PQE.设运动时间为t秒(t>0)
(1)在整个运动过程中,判断PE与AB的位置关系是
(2)如图2,当点D在线段AB上时,连接AQ、AP,是否存在这样的b,使得AP=PQ?若存在,求出对应的t的值;若不存在,请说明理由;
(3)当t=4时,点D经过点A:当t=时,点E在边AB上.设△ABC与△PQE重叠部分的面积为S,请求出在整个运动过程中S与t之间的函数关系式,以及写出相应的自变量t的取值范围,并求出当4<t≤
时S的最大值.
20、阅读理解,并解答问题:
如图所示的8×8网格都是由边长为1的小正方形组成,图①中的图案是3世纪我国汉代的赵爽在注解《周髀算经》时给出的,人们称它为“赵爽弦图”.赵爽通过对这种图形切割、拼接,巧妙地利用面积关系证明了著名的勾股定理,它表现了我国古人对数学的钻研精神和聪明才智,是我国数学史上的骄傲.
问题:
请用“赵爽弦图”中的四个直角三角形通过你所学过的图形变化,在图②,图③的方格纸中设计另外两个不同的图案,每个直角三角形的顶点均在方格纸的格点上,且四个三角形互不重叠.画图要求:
(1)图②中所设计的图案(不含方格纸)必须是轴对称图形但不是中心对称图形;
(2)图③中所设计的图案(不含方格纸)必须既是轴对称图形,又是中心对称图形.
21、解方程解不等式组:
(1)
(2)
22、在一次课外实践活动中,同学们要测量某公园人工湖两侧A,B两个凉亭之间的距离.选凉亭A,C作为观测点.如图,现测得∠CAB=45°,∠ACB=98°,AC=200米,请计算A,B两个凉亭之间的距离、(结果精确到1米)(参考数据:≈1.414,
≈1.732,sin 37°≈0.6,cos 37°≈0.8,tan 37°≈0.75)
23、 贫困户老王在精准扶贫工作队的帮扶下,在一片土地上种植了优质水果蓝莓,经核算,种植成本为18元/千克.今年正式上市销售,通过30天的试销发现:第1天卖出20千克;以后每天比前一天多卖4千克,销售价格元/千克)与时间x(天)之间满足如下表:
时间 | (1≤x<20) | (20≤x≤30) |
销售价格y(元/千克) | -0.5x+38 | 25 |
(其中,x,y均为整数)
(1)试销中销售量P(千克)与时间(天)之间的函数关系式为 .
(2)求销售蓝莓第几天时,当天的利润w最大?最大利润是多少元?
(3)求试销的30天中,当天利润w不低于870元的天数共有几天.
24、如图,中,点
分别在边
及其延长线上,且
,
,且
,连接
,求证:
.