1、下列各数中,互为相反数的是( ).
A.与
B.
与
C.
与
D.
与
2、在以为原点的数轴上,存在点
,
,满足
,若点
表示的数为
,则点
表示的( )
A.
B.
C.或
D.或
3、若a+b=7,ab=10,则a2+b2的值为( )
A.17
B.29
C.25
D.49
4、A、B两地相距900千米,甲乙两车分别从A、B两地同时出发,相向而行,已知甲车的速度为110千米/时,乙车的速度为90千米/时,则当两车相距100千米时,甲车行驶的时间是( )
A.4小时
B.4.5小时
C.5小时
D.4小时或5小时
5、不等式的解集在数轴上表示正确的是( )
A.
B.
C.
D.
6、已知样本容量为30,样本频数直方图中各个小长方形的高的比依次是2:4 :3 :1,则第二组的频数是()
A.14
B.12
C.9
D.8
7、下面等式成立的是( )
A.83.5°=83°50′
B.37°12′36″=37.48°
C.24°24′24″=24.44°
D.41.25°=41°15′
8、陈老师打算购买气球装扮学校“六一”儿童节活动会场,气球的种类有笑脸和爱心两种,两种气球的价格不同,但同一种气球的价格相同,由于会场布置需要,购买时以一束(4个气球)为单位,已知第一、二束气球的价格如图所示,则第三束气球的价格为( )
A. 19 B. 18 C. 16 D. 15
9、空气中某种微粒的直径是0.000002967米,将0.000002967用科学记数法表示为( )
A.
B.
C.
D.
10、下列说法:-a是负数;-2的倒数是;-(-3)的相反数是-3;④绝对值等于2的数2.其中正确的是( )
A. 1个 B. 2 个 C. 3个 D. 4个
11、如图,长为,宽为
的长方形的周长为16,面积为12,则
的值为( )
A.88
B.70
C.64
D.40
12、下列实数3π,,0,
,﹣3.1415,
,
中,无理数有( )
A.1个
B.2个
C.3个
D.4个
13、如图,长方形的宽为a,长为b,则周长为_________,面积为_________.
14、的相反数是______.
15、有m辆校车及n个学生,若每辆校车乘坐40名学生,则还有10名学生不能上车;若每辆校车乘坐43名学生,则只有1名学生不能上车.现有下列四个方程:
①40m+10=43m-1;②;③
;④40m+10=43m+1.其中
正确的是_____(请填写相应的序号)
16、观察下面的单项式:,
,
,
,
,
,______,…根据你发现的规律,第
个式子是______.(
为正整数).
17、比较两数的大小:(用“”、“
”或“
”填空)
_________1.
18、某件商品的成本价为a元,按成本价提高30%后标价,再以8折(即按标价的80%)销售,这件商品的售价为_____元.
19、某校为了了解本届初三学生体质健康情况,从全校初三学生中随进抽取 46名学生进行调查,上述抽取的样本容量为______.
20、写出一个一元一次方程,要求:解此方程时第一步必须是利用合并同类项法则合并同类项.我写的方程为_____.
21、算一算:
(1)(+)﹣(﹣
)﹣|﹣3|
(2)﹣23÷×(﹣
)2
(3)解方程:4﹣4(x﹣3)=2(9﹣x);
(4)解方程:
22、某地的一种绿色蔬菜,在市场上若直接销售,每吨利润为1000元;经粗加工后销售,每吨利润4000元;经精加工后销售,每吨利润7000元.当地一家公司现有这种蔬菜140吨,该公司加工厂的生产能力是:如果对蔬菜进行粗加工,每天可加工16吨;如果对蔬菜进行精加工,每天可加工6吨;但每天两种方式不能同时进行.受季节等条件的限制,必须用15天时间将这批蔬菜
全部销售或加工完毕.为此,公司研制了三种方案:
方案一:将蔬菜全部进行粗加工;
方案二:尽可能地对蔬菜进行精加工,没来得及加工的蔬菜,在市场上直接出售;
方案三:将一部分蔬菜进行精加工,其余蔬菜进行粗加工,并刚好15天完成.
如果你是公司经理,你会选择哪一种方案,请说说理由.
23、已知和
,作一个角等于
.(保留作图痕迹,不必写作法)
24、某商场销售A、B两种型号计算器,A型号计算器的进货价格为每台30元,B型号计算器的进货价格为每台40元. 商场销售5台A型号和1台B型号计算器,可获利润76元;销售6台A型号和3台B型号计算器,可获利润120元.
(1)分别求商场销售A、B两种型号计算器每台的销售价格.
(2)商场准备用不多于2 500元的资金购进A、B两种型号计算器共70台,问最少需要购进A型号的计算器多少台?【利润=销售价格-进货价格】
25、已知是
内部任意的一条射线,
,
分别是
、
的平分线.
(1)若,
,求
的度数;
(2)若,求
的度数.
26、解方程:.