1、下列命题中,正确的是( )
A.平行四边形的对角线相等 B.菱形的对角线互相垂直且平分
C.矩形的对角线互相垂直 D.对角线互相垂直的平行四边形是正方形
2、下列图形中,是中心对称图形但不是轴对称图形的是( )
A.等边三角形
B.圆
C.矩形
D.平行四边形
3、实数中﹣2,0,4,,﹣π,无理数的个数有( )
A. 2个 B. 3个 C. 4个 D. 5个
4、|-2|的值为( )
A.
B.2
C.-
D.-2
5、下列运算正确的是( )
A.b3+b2=b6
B.b3•b2=b6
C.4a-9a=-5
D.(ab2)3=a3b6
6、2022年卡塔尔世界杯开幕式所在的主体育场——卢塞尔体育场吸引了全球目光,这座建筑面积平方米的“金色之碗”由中国铁建国际集团有限公司承建,数据
用科学记数法表示为( )
A.
B.
C.
D.
7、二次函数的图象如图,且
则( )
A. B.
C.
D.以上都不是
8、据报道,2020年某市户籍人口中,60岁以上的老人有1230000人,预计未来五年该市人口“老龄化”还将提速.将1230000用科学记数法表示为( )
A.12.3×105 B.1.23×105 C.0.12×106 D.1.23×106
9、﹣的倒数是( )
A. B.﹣2 C.2 D.﹣
10、一条公路旁依次有、
、
三个村庄,甲乙两人骑自行车分别从
村、
村同时出发前往
村,甲乙之间的距离
与骑行时间
之间的函数关系如图所示,下列结论中错误的是( )
A.甲每小时比乙多骑行
B.出发后两人相遇
C.,
两村相距
D.相遇后,乙又骑了或
时两人相距
11、菱形OABC在平面直角坐标系中的位置如图所示,∠AOC=45°,OC=,则点B的坐标为_______
12、在实数范围内分解因式:__________________.
13、不等式组的最小整数解是__________.
14、如图,在△ABC中,cosB=,sinC=
,AC=5,则△ABC的面积是_____.
15、如图,已知Rt△AOB中,∠AOB=90º,AO=5,BO=3,点E、M是线段AB上的两个不同的动点(不与端点重合),分别过E、M作AO的垂线,垂足分别为K、L.
①△OEK面积S的最大值为__________;
②若以OE、OM为边构造平行四边形EOMF,当EM⊥OF时,OK+OL=__________.
16、方程的解是 .
17、我市在全民健身活动中准备为青少年举行一次网球知识讲座,小明和妹妹都是网球迷,要求爸爸去买门票,但爸爸只买回一张门票,那么谁去就成了问题,小明想到一个办法:通过做游戏决定谁去.游戏规则是:在不透明的口袋中分别放入2个白色和1个黄色的乒乓球,它们除颜色外其余都相同.游戏时先由妹妹从口袋中任意摸出1个乒乓球记下颜色后放回并摇匀,再由小明从口袋中摸出1个乒乓球,记下颜色.如果姐弟二人摸到的乒乓球颜色相同,则妹妹赢,否则小明赢.
⑴ 请用树状图或列表的方法表示游戏中所有可能出现的结果.
⑵ 这个游戏规则对游戏双方公平吗?请说明理由.
18、今年是全面建成小康社会和“十三五”规划收官之年,为促进销售,某公司开发了A、B两项新产品,销售前景广阔.已知A、B的成本、售价和每日销量如下表所示:
| 成本(元/件) | 售价(元/件) | 销量(件/日) |
A | 500 | 700 | 500 |
B | 800 | 1050 | 300 |
根据销售情况,公司对B项产品降价销售,同时对A项产品提价销售,发现B项产品每降价5元就多销售2件,A项产品每提价5元就可少销售1件,要保持每日的总销量不变,设A项产品每天少销售x个,每天总获利为y元.
(1)求y与x的函数关系式,并写出x的取值范围;
(2)要使每天利润不低于208000元,直接写出x的取值范围;
(3)该公司决定每销售一件A产品,就捐给红十字会a(0<a≤100)元作为抗疫基金.当40≤x≤50时,每日的最大利润为237250元,求a的值.
19、设二次函数,一次函数
,若方程
的两根是
,
.
(1)求b、c的值;
(2)当x满足时,比较
与x的大小并说明理由;
(3)设点M的坐标是,点P是抛物线
上的一个动点,当点P到点M的距离与到直线
的距离之和最小时,请直接写出点P坐标.
20、如图,在边长为1的小正方形组成的网格中,△ABC和△DEF的顶点都在格点上,P1、P2、P3、P4、P5是△DEF边上的5个格点,请按要求完成下列各题:
(1)试证明△ABC为直角三角形;
(2)判断△ABC和△DEF是否相似,并说明理由;
21、下列图形都是由同样大小的菱形按照一定规律组成的,请根据排列规律完成下列问题:
(1)填写下表:
图形序号 | 菱形个数(个) |
① | 3 |
② | 7 |
③ | ________ |
④ | ________ |
…… | …… |
(2)根据表中规律猜想,图n中菱形的个数_______(用含n的式子表示);
(3)是否存在一个图形恰好由111个菱形组成?若存在,求出图的序号;若不存在,说明理由.
22、计算:a•a3﹣(2a2)2+4a4
23、计算:.
24、计算: