1、下列一元二次方程中,有两个不相等实数根的是()
A. B.
C. D.
2、下列说法中:①一组数据的标准差是它的差的平方;②数据8,9,10,11,1l的众数是2;③如果数据的平均数为
,那么
;④数据0,
,1,
,1的中位数是l.错误的有( ).
A. 4个 B. 3个 C. 2个 D. 1个
3、如图,在正方形ABCD中,BD=BE,CE∥BD,BE交CD于F点,则∠DFE的度数为( )
A. 45° B. 60° C. 75° D. 90°
4、如图,在△ABC中,∠BAC=90°,AB=AC,AD是经过A点的一条直线,且B、C在AD的两侧,BD⊥AD于D,CE⊥AD于E,交AB于点F,CE=10,BD=4,则DE的长为( )
A. 6 B. 5 C. 4 D. 8
5、如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于点D,已知BC=8,AC=6,则斜边AB上的高是( )
A. 10 B. 5 C. D.
6、已知等腰三角形一腰上的高与另一腰的夹角为,则这个等腰三角形的顶角是( )
A.
B.
C.
D.或
7、下列各组代数式中没有公因式的是 ( )
A.4a2bc与8abc2 B.a3b2+1与a2b3–1
C.b(a–2b)2与a(2b–a)2 D.x+1与x2–1
8、A、B两点在一次函数图象上的位置如图所示,两点的坐标分别为A(x+a,y),B(x,y+b).下列结论正确的是( )
A. a>0 B. ab<0 C. ab>0 D. b<0
9、下列性质中,矩形不一定具有的是( )
A.对角线相等 B.对角线互相平分
C.4个内角相等 D.一条对角线平分一组对角
10、如图,数轴上的点P表示的数可能是()
A. B. -
C.
D. -3.2
11、如图所示,三个正比例函数的图象分别对应的表达式:①,②
,③
.则a,b,c的大小关系是________.
12、若y=2+2,则xy=_____.
13、如图,在中,若
,
,则
的周长比
的周长长_____.
14、在四边形ABCD中,有以下四个条件:①AB∥CD;②AD=BC;③AC=BD;④∠ADC=∠ABC.从中选取三个条件,可以判定四边形ABCD为矩形.则可以选择的条件序号是___.
15、若m=,则m3﹣m2﹣2017m+2015=_____.
16、如果函数 y=x ﹣ 2 与 y= ﹣ 2x+4 的图象的交点坐标是( 2 , 0 ),那么二元一次方程组 的解是 ________________ .
17、一组数据:9、12、10、9、11、9、10,则它的方差是_____.
18、已知,中,
的垂直平分线交
于
,交
所在直线于
,若
,则
__________.
19、如图,在平面直角坐标系中,直线y=-2x+2与x轴、y轴分别交于A,B两点,C是线段AB上一动点(不与点A,B重合),过点C作直线CD⊥y轴于点D,若M为射线DC上一动点,则在平面直角坐标系中存在点N,使得以A,B,M,N为顶点的四边形是正方形,则M点坐标为______.
20、一次数学测试后,某班40名学生的成绩被分为5组,第1~4组的频数分别为14、10、8、4,则第5组的频率为___________.
21、解下列不等式组,并把解集在数轴上表示出来:
(1)﹣1
(2)
22、(1)定义新运算:对于任意实数,都有
.例如,数字2和5在该新运算下结果为
.计算如下:
.
(1)求的值;
(2)请你模仿(1),定义一种新运算,使得实数和
的运算结果为2020.写出你定义的新运算,并写出计算过程.
23、如图1,在正方形ABCD中,点E、F分别是边BC、AB上的点,且CE=BF.连结DE,过点E作EG⊥DE,使EG=DE,连结FG、FC
(1)请判断:FG与CE的数量关系是 ________,位置关系是________ .
(2)如图2,若点E、F分别是边CB、BA延长线上的点,其他条件不变,(1)中结论是否仍然成立?请作出判断并给予证明;
(3)如图3,若点E、F分别是边BC、AB延长线上的点,其他条件不变,(1)中结论是否仍然成立?请直接写出你的判断.
24、如图,在四边形ABCD中,∠B=∠C=90°,点E在BC上,∠AEC=135°,CE=CD,AB=1,AD=.求线段BC的长.
25、如图,在平行四边形中,
,将纸片沿对角线
对折,
边与
边交于点E,此时,
恰为等边三角形.
(1)猜想与
的位置关系,并证明你的结论;
(2)连接,请说明四边形
为平行四边形;