1、在平面直角坐标系中,直线:y=x-1与x轴交于点A1,如图所示依次作正方形A1B1C1O,正方形A2B2C2C1,……正方形AnBnCnCn-1,使得点A1,A2,A3,……在直线
上,点C1, C2, C3,……在y轴正半轴上,则点Bn的横坐标是( )
A.2n-1 B.2n C.2n+1 D.2n-1
2、若△ABC三边长a,b,c满足 +|
|+(
)2=0,则△ABC是( )
A. 等腰三角形 B. 等边三角形 C. 直角三角形 D. 等腰直角三角形
3、下面计算正确的是( )
A.4+=4
B.÷
=3
C.·
=
D.=±2
4、已知点、
、
都在直线
上,则
的大小关系是( )
A. B.
C.
D.
5、下列计算中,正确的是( )
A. 5-
=5
B. +2
=3
C. 3 -
=2
D. =
-
=1
6、如图,在等边△ABC内有一点D,AD=4,BD=3,CD=5,将△ABD绕A点逆时针旋转,使AB与AC重合,点D旋转至点E,则四边形ADCE的面积为( )
A.12
B.
C.
D.
7、直线y=-3x+2经过的象限为( )
A. 第一、二、四象限 B. 第一、二、三象限 C. 第一、三、四象限 D. 第二、三、四象限
8、如图,中,
平分
,则
等于( )
A. B.
C.
D.
9、已知函数y=ax+b和y=kx的图象交于点P,则根据图象可得,关于x、y的二元一次方程组的解是( )
A.
B.
C.
D.
10、一次函数y1=kx+b与y2=x+a的图象如图,则下列结论①k<0;②a>0;③当x<3时,y1<y2中,正确的个数是( )
A.0 B.1 C.2 D.3
11、如图,将△ABC的边AB绕着点A顺时针旋转(
)得到AB′,边AC绕着点A逆时针旋转
(
)得到AC′,联结B′C′,当
+
=60°时,我们称
AB′C′是
ABC的“双旋三角形”,如果等边
ABC的边长为a, 那么它所得的“双旋三角形”中B′C′=___________(用含a的代数式表示).
12、点在一次函数
的图像上
__________
(填“>”“=”或“<”).
13、如图,矩形ABCD的对角线AC与BD相交点O,∠AOB=60°,AB=10,E、F分别为AO、AD的中点,则EF的长是_____.
14、若一个多边形的内角和比外角和大180°,则这个多边形的边数为_____.
15、如图中,每个图形都是若干个棋子围成的正方形图案,图案的每条边(包括两个顶点)上都有(
≥2)个棋子,每个图案的棋子总数为S,按图的排列规律推断S与
之间的关系可以用式子___________来表示.
16、将代入反比例函数
中,所得函数值记为
,又将
代入函数中,所得函数值记为
,再将
代入函数中,所得函数值记为
,如此继续下去,则
________.
17、如图,在平面直角坐标系中,O为坐标原点,四边形OABC是长方形,点A、C的坐标分别为A(10,0)、C(0,4),点D是OA的中点,点P在BC边上运动,当△ADP为等腰三角形时,点P的坐标为_______________________________.
18、计算:________.
19、小亮早晨从家骑车去学校,先走下坡路,然后走上坡路,去时行程情况如图.若返回时,他的下坡和上坡速度仍保持不变,那么小亮从学校按原路返回家用的时间是____分.
20、如图,矩形ABCD中,AB=4,AD=3,E为对角线BD上一个动点,以E为直角顶点,AE为直角边作等腰Rt△AEF,A、E、F按逆时针排列.当点E从点B运动到点D时,点F的运动路径长为___________.
21、如图,在等边三角形ABC中,AB=12cm,动点P从点A出发以1cm/s的速度沿AC匀速运动,动点Q同时从点B出发以同样的速度沿CB的延长线方向匀速运动,当点P到达点C时,点P,Q同时停止运动.设运动时间为ts,过点P作PE⊥AB于点E,连接PQ交AB于点D.
⑴当t为何值时,△CPQ为直角三角形?
⑵求DE的长.
⑶取线段BC的中点M,连接PM,将△CPM沿直线PM翻折,得到△C,PM,连接AC,,当t= 时,AC,的值最小,最小值为 .
22、解方程:=1.
23、如图所示,在△ABC中,AB:BC:CA=3:4:5,且周长为36cm,点P从点A开始沿AB边向点B以每秒1cm的速度移动;点Q从点B沿BC边向点C以每秒2cm的速度移动;如果同时出发,则过3秒时,求△BPQ的面积。
24、如图所示,图1、图2分别是的网格,网格中的每个小正方形的边长均为1.请按下列要求分别画出相应的图形,且所画图形的每个顶点均在所给小正方形的顶点上.
(1)在图1中画出一个周长为的菱形
(非正方形);
(2)在图2中画出一个面积为9的平行四边形,且满足
,请直接写出平行四边形
的周长.
25、一艘轮船和一艘快艇沿相同的路线从甲港出发驶向乙港的过程中,路程随时间
变化的图像如图示(分别是正比例函数的图像和一次函数的图像).根据图中提供的信息解答下列问题:
(1)分别求出表示轮船和快艇行驶过程中路程和时间
之间的函数解析式(不要求写出自变量的取值范围);
(2)轮船和快艇在途中(不包括起点和终点)行驶的速度分别是多少?
(3)快艇出发多长时间赶上轮船?