1、在距离不太远的情况下,亲子电动车(如图)是很多家长接送小学生的选择,亲子电动车一般限制时速不能超过25公里/小时,图为某电动车起步时的速度随时间变化的图像,下列说法正确的是( )
A.0~5s内电动车的位移为15m
B.t=5s时电动车的加速度为1.2m/s2
C.0~5s内电动车的平均速度大于3m/s
D.在起步过程中电动车的功率是一定的
2、汽车自动控制刹车系统(ABS)的原理如图所示.铁质齿轮P与车轮同步转动,右端有一个绕有线圈的磁体(极性如图),M是一个电流检测器.当车轮带动齿轮P转动时,靠近线圈的铁齿被磁化,使通过线圈的磁通量增大,铁齿离开线圈时又使磁通量减小,从而能使线圈中产生感应电流,感应电流经电子装置放大后即能实现自动控制刹车.齿轮从图示位置开始转到下一个铁齿正对线圈的过程中,通过M的感应电流的方向是( )
A.总是从左向右
B.总是从右向左
C.先从右向左,然后从左向右
D.先从左向右,然后从右向左
3、如图甲所示,和
为两相干波源,振动方向均垂直于纸面,产生的简谐横波波长均为λ,Р点是两列波相遇区域中的一点,已知Р点到两波源的距离分别为
,
,两列波在Р点干涉相消。若
的振动图象如图乙所示,则
的振动方程可能为( )
A.(cm)
B.(cm)
C.(cm)
D.(cm)
4、如图所示,用一束太阳光去照射横截面为三角形的玻璃砖,在光屏上能观察到一条彩色光带。下列说法正确的是( )
A.玻璃对b光的折射率大
B.c光子比b光子的能量大
C.此现象是因为光在玻璃砖中发生全反射形成的
D.减小a光的入射角度,各种色光会在光屏上依次消失,最先消失的是b光
5、珠宝学院的学生实习时,手工师傅往往要求学生打磨出不同形状的工件。如图所示为某同学打造出的“蘑菇形”透明工件的截面图,该工件的顶部是半径为R的半球体,为工件的对称轴,A、B是工件上关于
轴对称的两点,A、B两点到
轴的距离均为
,工件的底部涂有反射膜,工件上最高点与最低点之间的距离为2R,一束单色光从A点平行对称轴射人工件且恰好从B点射出,则工件的折射率为( )
A.
B.
C.
D.
6、在垂直纸面的匀强磁场中,有不计重力的甲、乙两个带电粒子,在纸面内做匀速圆周运动,运动方向和轨迹示意如图.则下列说法中正确的是( )
A.甲、乙两粒子所带电荷种类不同
B.若甲、乙两粒子的动量大小相等,则甲粒子所带电荷量较大
C.若甲、乙两粒子所带电荷量及运动的速率均相等,则甲粒子的质量较大
D.该磁场方向一定是垂直纸面向里
7、如图所示,竖直平面内半径的圆弧AO与半径
的圆弧BO在最低点C相切。两段光滑的直轨道的一端在O点平滑连接,另一端分别在两圆弧上且等高。一个小球从左侧直轨道的最高点A由静止开始沿直轨道下滑,经过O点后沿右侧直轨道上滑至最高点B,不考虑小球在O点的机械能损失,重力加速度g取10m/s。则在此过程中小球运动的时间为( )
A.1.5 s
B.2.0 s
C.3.0 s
D.3.5 s
8、如图,均匀磁场中有一由半圆弧及其直径构成的导线框,半圆直径与磁场边缘重合;磁场方向垂直于半圆面(纸面)向里,磁感应强度大小为B0。使该线框从静止开始绕过圆心O、垂直于半圆面的轴以角速度ω匀速转动半周,在线框中产生感应电流.现使线框保持图中所示位置,磁感应强度大小随时间线性变化。为了产生与线框转动半周过程中同样大小的电流,磁感应强度随时间的变化率的大小应为( )
A.
B.
C.
D.
9、如图,电路中所有元件完好。当光照射光电管时,灵敏电流计指针没有偏转,其原因是( )
A.电源的电压太大
B.光照的时间太短
C.入射光的强度太强
D.入射光的频率太低
10、有一颗绕地球做匀速圆周运动的卫星,其运行周期T是地球近地卫星周期的倍,卫星轨道平面与地球赤道平面重合,卫星上装有太阳能收集板可以把光能转化为电能,提供卫星工作所必须的能量,已知sin37°=0.6,sin53°=0.8,近似认为太阳光是垂直地轴的平行光,卫星运转一周接收太阳能的时间为t,则
的值为( )
A.
B.
C.
D.
11、冰壶甲以速度v0被推出后做匀变速直线运动,滑行一段距离后与冰壶乙碰撞,碰撞后冰壶甲立即停止运动。以下图像中能正确表示冰壶甲运动过程的是图像( )
A.
B.
C.
D.
12、如图所示,质量为M的物块放置在光滑水平桌面上,右侧连接一固定于天花板与竖直方向成θ=45°的轻绳,左侧通过一与竖直方向成θ=45°跨过光滑定滑轮的轻绳与一竖直轻弹簧相连。现将质量为m的钩码挂于弹簧下端,当弹簧处于原长时,将钩码由静止释放,当钩码下降到最低点时(未着地),物块对水平桌面的压力恰好为零。轻绳不可伸长,弹簧劲度系数为k且始终在弹性限度内,物块始终处于静止状态,重力加速度为g。以下判断正确的是( )
A.钩码向下一直做加速运动
B.钩码向下运动的最大距离为
C.M=m
D.M=m
13、光滑水平面上放有一上表面光滑、倾角为α的斜面A,斜面质量为M,底边长为 L,如图所示。将一质量为m的可视为质点的滑块B从斜面的顶端由静止释放,滑块B经过时间t刚好滑到斜面底端。此过程中斜面对滑块的支持力大小为,则下列说法中正确的是( )
A.
B.滑块下滑过程中支持力对B的冲量大小为
C.滑块到达斜面底端时的动能为
D.此过程中斜面向左滑动的距离为
14、如图甲所示,某同学利用橡皮筋悬挂手机的方法模拟蹦极运动,并利用手机的加速度传感器研究加速度随时间变化的图像,如图乙所示。手机保持静止时,图像显示的加速度值为0,自由下落时,图像显示的加速度值约为-10m/s2,忽略空气阻力,下列说法正确的是( )
A.时,手机已下降了约1.8m
B.时,手机正向上加速运动
C.加速度约为70m/s2时,手机速度为0
D.时间内,橡皮筋的拉力逐渐减小
15、类比是一种常用的研究方法.如图所示,O为椭圆ABCD的左焦点,在O点固定一个正电荷,某一电子P正好沿椭圆ABCD运动,A、C为长轴端点,B、D为短轴端点,这种运动与太阳系内行星的运动规律类似.下列说法中正确的是( )
A.电子在A点的线速度小于在C点的线速度
B.电子在A点的加速度小于在C点的加速度
C.电子由A运动到C的过程中电场力做正功,电势能减小
D.电子由A运动到C的过程中电场力做负功,电势能增加
16、某同学利用如图甲所示的装置,探究物块a上升的最大高度H与物块b距地面高度h的关系,忽略一切阻力及滑轮和细绳的质量,初始时物块a静止在地面上,物块b距地面的高度为h,细绳恰好绷直,现将物块b由静止释放,b碰到地面后不再反弹,测出物块a上升的最大高度为H,此后每次释放物块b时,物块a均静止在地面上,物块b着地后均不再反弹,改变细绳长度及物块b距地面的高度h,测量多组(H,h)的数值,然后做出H-h图像(如图乙所示),图像的斜率为k,已知物块a、b的质量分别为m1、m2,则以下给出的四项判断中正确的是( )
①物块a,b的质量之比 ②物块a、b的质量之比
③H-h图像的斜率为k取值范围是0<k<1 ④H-h图像的斜率为k取值范围是1<k<2
A.①③
B.②③
C.①④
D.②④
17、设地球的半径为R0,质量为m的卫星在距地面R0高处做匀速圆周运动,地面的重力加速度为g,则下列说法正确的是( )
A.卫星的角速度为
B.卫星的线速度为
C.卫星的加速度为
D.卫星的周期为
18、某压敏电阻的阻值随受压面所受压力的增大而减小。某兴趣小组利用该压敏电阻设计了判断电梯运行状态的装置,其电路如图甲所示。将压敏电阻平放在竖直电梯内,受压面朝上,在上面放一物体A,电梯静止时电压表示数为,在电梯由静止开始运行过程中,电压表的示数如图乙所示,则电梯运动情况为( )
A.匀加速下降
B.匀加速上升
C.加速下降且加速度在变大
D.加速上升且加速度在变小
19、放射性元素钚()是重要的核原料,其半衰期为88年,一个静止的钚238衰变时放出α粒子和γ光子,生成原子核X,已知钚238、α粒子和原子核X的质量分别为
、
、
,普朗克常量为
,真空中的光速为c,则下列说法正确的是( )
A.X的比结合能比钚238的比结合能小
B.将钚238用铅盒密封,可减缓其衰变速度
C.钚238衰变时放出的γ光子具有能量,但是没有动量
D.钚238衰变放出的γ光子的频率小于
20、如图所示,甲、乙是两个完全相同的闭合导线线框,a、b是边界范围、磁感应强度大小和方向都相同的两个匀强磁场区域,只是a区域到地面的高度比b高一些。甲、乙线框分别从磁场区域的正上方距地面相同高度处同时由静止释放,穿过磁场后落到地面。下落过程中线框平面始终保持与磁场方向垂直。以下说法正确的是( )
A.甲乙两框同时落地
B.乙框比甲框先落地
C.落地时甲乙两框速度相同
D.穿过磁场的过程中甲线框中通过的电荷量小于乙线框
21、一列机械波在某一均匀介质中传播。如果将波源的振动频率调为原来的一半,而其他条件保持不变,则这列波在该介质中的传播速度___________(填“变大”“变小”或“不变”),波长变为原来的___________倍。
22、如图所示,由某种单色光形成的两束平行的细光束,垂直于半圆柱玻璃的平面射到半圆柱玻璃上。光束1沿直线穿过玻璃,入射点为圆心O;光束2的入射点为A,穿过玻璃后两条光束交于P点。已知玻璃截面的半径为R,OA=,OP=
R,光在真空中的传播速度为c。玻璃对该种单色光的折射率为______;光束2从A点传播到P点所用的时间为______。
23、为预防病毒感染,食堂熬好“芪防败毒汤”并用环保塑料袋打包运送给学生。若将刚熬好的“芪防败毒汤”倒入导热性能良好的塑料袋中并迅速打结(不漏气),由于袋内空气的温度先升高后下降,一小段时间后鼓起的塑料袋瘪掉,则在温度下降的过程中,外界对袋内空气(视为理想气体)做___________(填“正功”或“负功”),袋内空气________(填“吸收”或“放出”)热量。
24、气垫鞋指的是鞋底上部和鞋底下部之间设置有可形成气垫的储气腔,储气腔与设置在鞋上的进气孔道和出气孔道组成通气装置。设人走路时,当脚抬起离地,储气腔内吸入空气;当脚踩下地面,储气腔气体被排出。由此可判断,脚离地过程中,储气腔内气体对外界________(选填“做正功”、“做负功”或“不做功”),原来储气腔内的气体分子平均动能________(选填“增大”、“减小”、“不变”)。
25、在“用单分子油膜估测分子大小”实验中,要先将纯油酸配置成油酸酒精溶液再滴入水中,原因是油酸酒精溶液___________。一滴浓度为η、体积为V的油酸酒精溶液在水中最终形成的油膜面积为S,则估测出油酸分子的直径为___________。
26、随着科技的发展,电容器已经广泛应用于各种电器中。有一平行板电容器,它的极板上带有的电荷量,现只改变电容器所带的电荷量,使其两板间的电压变为
,此时极板上所带的电荷量比原来减少了
,则此电容器的电容为_________
,电容器原来两板间的电压为_________V。
27、某同学利用电压表和定值电阻测蓄电池电源的电动势和内阻。
(1)实验室有以下三个电压表,需要将它们改装成量程为6V的电压表,以下措施正确的是____________
A.将电压表V1(0~1V,内阻约为1k)与5k
的定值电阻R串联
B.将电压表V2(0~2V,内阻约为2k)与4k
的定值电阻R串联
C.将电压表V3(0~3V,内阻为3k)与3k
的定值电阻R串联
D.以上三项都可以
(2)利用(1)中改装后的电压表,测蓄电池的电动势和内阻,图甲为实验电路图,根据给出的电路图,将图乙的实物图补充完整______。
(3)请完成下列主要实验步骤:
A.选择正确的实验仪器连接电路;
B.将开关S2闭合,开关S1断开,测得电压表的示数是U1;
C.再将开关S1闭合,测得电压表的示数是U2;
D.断开开关S2;
E.若改装后的电压表可视为理想电压表,则电源的内阻r=____(用字母U1、U2、R0表示);
(4)由于所用电压表不是理想电压表,所以测得的电动势比实际值偏____(填“大”或“小”)。
28、如图,倾角为θ的倾斜轨道与水平轨道交于Q点,在倾斜轨道上高h=5m处由静止释放滑块A,此后A与静止在水平轨道上P处的滑块B发生弹性碰撞(碰撞时间不计)。已知A、B的质量之比为mA:mB=1:4,B与轨道间的动摩擦因数为μ,A与轨道间无摩擦,重力加速度大小为g=10m/s2(A、B均可视为质点,水平轨道足够长,A过Q点时速度大小不变、方向变为与轨道平行。)
(1)第一次碰撞后瞬间,求A与B的速度大小vA和vB;
(2)求B在水平轨道上通过的总路程s;
(3)当P、Q的距离为时,在B的速度减为零之前,A与B能发生第二次碰撞,试确定μ与θ之间满足的关系。
29、近年来,我国高速铁路迅速发展,已成为国家新名片。高铁动车组在制动过程中采用“再生制动”方式,将列车的动能转化为可再生利用的能量,有效降低能耗。一种再生利用的方式是将列车甲制动产生的电能,提供给同一电网下处于启动状态的列车乙。此过程可简化为如图所示的模型:固定在水平地面上的足够长的平行金属导轨,处于竖直方向的匀强磁场中;甲、乙是两根相同的金属棒,放在导轨上,与导轨良好接触,且始终与导轨保持垂直。已知磁场的磁感应强度大小为B,导体棒质量均为m,电阻均为R,长度与导轨间距相等,均为l;导体棒甲、乙在导轨上运动时,受到的摩擦阻力大小均为f;时,导体棒甲的速度大小为
,方向向左,导体棒乙的速度为0。不计导轨的电阻。
(1)当列车甲开始制动,即导体棒甲由速度开始减速时,求导体棒乙获得的电磁牵引力的大小和方向;
(2)根据法拉第电磁感应定律,证明在制动过程中,导体棒中的电流i与两导体棒的速度差
的关系为
;
(3)已知当导体棒甲经过位移,速度从
减到
时,乙不能再加速,此时再生制动结束。为了求得这一过程中导体棒乙的位移
,某同学的分析计算过程如下:
请你判断这位同学的解法是否正确,并说明理由。
30、如图,在纸面内有平面直角坐标系xOy,x轴上方区域有垂直纸面向里的匀强磁场,磁感应强度大小为B,x轴与下方虚线MN之间的区域有水平向右的匀强电场,电场强度大小为E,MN下方存在另一垂直纸面向里的匀强磁场。一个质量为m、电荷量为q的带正电粒子从坐标原点O平行纸面以一定速度射入磁场,方向与x轴负方向夹角为30°,带电粒子在磁场中运动的轨道半径为R。若粒子经过电场区域后垂直MN射入下方磁场区域并且能够再次回到原点O,不计粒子的重力,试求:
(1)粒子从O点进入磁场时的速度大小和进入电场时的位置坐标。
(2)MN下方磁场的磁感应强度的大小。
(3)从粒子由O点出发到再次回到O点所用的时间。
31、如图所示,水平地面上方MN边界右侧存在垂直纸面向外的匀强磁场和竖直方向的匀强电场(图中未标出),磁感应强度B=1.0T。在边界MN离地面高h=3m处的A点,质量m=1×10-3kg、电量q=1×10-3C的带正电的小球(可视为质点)以速度v0水平进入右侧的匀强磁场和匀强电场的区域,小球进入右侧区域恰能做匀速圆周运动(g取10m/s2)。不考虑小球落到水平地面反弹情况。求:
(1)电场强度的大小和方向;
(2)若0<v0≤3m/s,求小球在磁场中运动的最短时间t1;
(3)若0<v0≤3m/s,求小球落在水平面上的范围。(相关数学:令函数f(x)=-2x3+3x2的导函数f`(x)=0得极大值点)
32、如图所示,足够长水平光滑轨道连接一半径为R的光滑圆弧轨道,开始时A球静止,质量为m的球B在水平轨道上以某一初速度向右运动,经过半径为R的
光滑圆弧轨道射出。调整挡板位置,发现当B球与固定挡板发生垂直撞击时,撞击点与圆心位置等高,且B球碰撞挡板时没有机械能损失。在物体B碰撞完成返回圆弧轨道后马上撤去挡板,之后B球能与A球在水平轨道上发生不止一次弹性碰撞。则
(1)轨道右端与挡板间的距离x是多少?
(2)B球的初速度v0为多大?
(3)球A的质量M应该满足什么条件?