1、设函数,
,若函数
(
)恰有三个零点
、
、
(
),则
的取值范围是( )
A.
B.
C.
D.
2、设,
,
,则
,
,
的大小关系为( )
A.
B.
C.
D.
3、已知,则
( )
A.
B.
C.
D.
4、已知函数的单调递增区间为( )
A. B.
C.
D.
5、一条河两岸平行,河的宽度为,一艘船从河岸边的
地出发,向河对岸航行.已知船的速度
的大小为
,水流速度
的大小为
,若船的航程最短,则行驶完全程需要的时间
为( )
A.
B.
C.
D.
6、下列说法正确的是( )
A.有两个平面互相平行,其余各面都是平行四边形的多面体是棱柱
B.四棱锥的四个侧面都可以是直角三角形
C.有两个面互相平行,其余各面都是梯形的多面体是棱台
D.以三角形的一条边所在直线为旋转轴,其余两边旋转形成的曲面所围成的几何体叫圆锥
7、集合可化简为( )
A.
B.
C.
D.
8、定义在上的偶函数
满足
(
),则函数了
的零点个数为( )
A.1 B.2 C.3 D.4
9、已知,
,
,则( )
A. B.
C.
D.
10、若函数的部分图象如图所示,则函数解析式为( )
A. B.
C. D.
11、已知集合或
,
,且
,则实数
的取值范围为( )
A. B.
C. D.
12、函数的定义域为( )
A. B.
C.
D.
13、若复数满足
,则
__________.
14、设集合,
,那么
______.
15、函数在
是单调递减的,则
的取值范围是________.
16、若数列各项均不为零,前
项和为
,且
,
,则
______.
17、已知函数,若函数
所有零点的乘积为1,则实数a的取值范围为___________.
18、在函数图象的对称轴中,与原点距离最小的一条的方程为
___________.
19、设函数,则
__________.
20、求值 =_________
21、函数的定义域为_____________.
22、已知,
,若
与
为共线向量,则实数k=__________.
23、已知向量,且
.
(1)求及
;
(2)若的最小值为
,求实数
的值.
24、设关于的一元二次方程
有两个实根
,
.
(1)求的值;
(2)求证:,且
;
(3)如果,试求
的最大值.
25、已知函数,常数
(1)已知,若
的定义域关于原点对称,求实数
的值;
(2)当时,判断
在区间
上的单调性,并利用定义证明您的结论.