1、如图,圆形水平餐桌面上有一个半径为r、可绕中心轴转动的同心圆盘,在圆盘的边缘放置一个质量为m的小物块。物块与圆盘及与餐桌面间的动摩擦因数均为,现从静止开始缓慢增大圆盘的角速度,物块从圆盘上滑落后,最终恰好停在桌面边缘。若最大静摩擦力等于滑动摩擦力,重力加速度为g,圆盘厚度及圆盘与餐桌间的间隙不计,物块可视为质点。则( )
A.物块从圆盘上滑落的瞬间,圆盘的角速度大小为
B.物块从圆盘上滑落的瞬间,圆盘的线速度大小为
C.餐桌面的半径为
D.物块随圆盘运动的过程中,圆盘对小物块做功为
2、用图甲和图乙所示的装置探究平抛运动的特点。下列实验操作中错误的是( )
A.用图甲装置研究平抛物体的竖直分运动时,观察A、B两球是否同时落地
B.图乙装置中的背板必须处于竖直面内,固定时可用铅垂线检查背板是否竖直
C.若将小球放在图乙装置的斜槽末端水平部分任一位置均能保持静止,则说明斜槽末端水平
D.用图乙装置多次实验以获得钢球做平抛运动的轨迹时,可以从斜槽上任意不同位置静止释放钢球
3、如图所示,位于竖直平面内的固定光滑圆环轨道与水平面相切于 M点,与竖直墙相切于A点。竖直墙上另一点B与M 的连线和水平面的夹角为60°,C是圆环轨道的圆心。已知在同一时刻 a、b两球分别由 A、B 两点从静止开始沿光滑倾斜直轨道 AM、BM 运动到M 点,c球由C点自由下落到 M 点。则( )
A.a 球最后到达 M点
B.b 球最后到达 M点
C.c 球最后到达 M点
D.三球同时到达M点
4、如图所示,甲、乙两运动员在冰面上训练弯道滑冰技巧,某次恰巧同时到达虚线PQ上的P点,然后分别沿半径和
(
)的跑道匀速率运动半个圆周后到达终点。设甲、乙质量相等,他们做圆周运动时的向心力大小也相等。下列判断中正确的是( )
A.甲运动员的线速度较小
B.甲运动员的在相等的时间里转过的圆心角较小
C.甲到达终点所用的时间较长
D.在运动员转过半个圆周的过程中,甲的动量变化量等于乙的动量变化量
5、如图所示,水平向右的匀强电场中有一绝缘斜面,一带电金属滑块以的初动能从斜面底端A冲上斜面,到顶端B时返回,已知滑块从A滑到B的过程中克服摩擦力做功
,克服重力做功
,以A点为零重力势能点,则( )
A.滑块上滑过程中机械能减少
B.滑块上滑过程中机械能与电势能之和减少
C.滑块上滑过程中动能与重力势能相等的点在中点之上
D.滑块返回到斜面底端时动能为
6、如图,一定质量的理想气体从状态a出发,经过等容过程到达状态b,再经过等温过程到达状态c,直线ac过原点。则气体( )
A.在状态c的压强大于在状态a的压强
B.在状态b的压强小于在状态c的压强
C.在b→c的过程中内能保持不变
D.在a→b的过程对外做功
7、有些金属原子受激后从激发态跃迁到基态时,会发出特定颜色的光,可见光谱如图所示。已知某原子的某激发态与基态的能量差为,普朗克常量
。该原子从上述激发态跃迁到基态发光颜色为( )
A.红色
B.黄色
C.蓝色
D.紫色
8、如图所示,两根粗细相同的玻璃管下端用橡皮管相连,左管内封有一段长的气体,右管开口,左管水银面比右管内水银面高
,大气压强为
,现移动右侧玻璃管,使两侧管内水银面相平,此时气体柱的长度为( )
A.
B.
C.
D.
9、真空中有一匀强磁场,磁场边界为两个半径分别为a和的同轴圆柱面,磁场的方向与圆柱轴线平行,其横截面如图所示。大量电子以速率v沿半径方向射入磁场。已知电子质量为m,电荷量为e,忽略重力。为使电子不能进入内部无磁场区域,磁场的磁感应强度B最小为( )
A.
B.
C.
D.
10、如图所示,两物体A、B之间有一压缩的轻质弹簧并置于光滑的水平面上,两物体与轻弹簧不连接,开始用细线将两物体拴接,某时刻将细线烧断。已知弹簧储存的弹性势能为,物体A、B的质量分别为3m、m。则下列说法正确的是( )
A.两物体与弹簧分离时,物体A的速度为
B.两物体与弹簧分离时,物体B的速度为
C.轻弹簧对两物体做的功相同
D.轻弹簧对两物体的冲量大小相等
11、长为l0的轻杆一端固定一个质量为m的小球,绕另一端O在竖直平面内做匀速圆周运动,如图所示.若小球运动到最高点时对杆的作用力为2mg,以下说法正确的是
A.小球运动的线速度大小为
B.小球运动的线速度大小为
C.小球在最高点时所受的合力3mg
D.小球在最低点时所受杆的拉力为3mg
12、圆锥摆是一种简单的物理模型,四个形状相同的小球A、B、C、D在水平面内均做圆锥摆运动。如图甲所示,其中小球A、B在同一水平面内做圆锥摆运动(连接B球的绳较长),小球;如图乙所示,小球C、D在不同水平面内做圆锥摆运动,但是连接C、D的绳与竖直方向之间的夹角相同(连接D球的绳较长),
,则下列说法正确的是( )
A.小球A、B向心加速度大小相等
B.小球C比D向心加速度大
C.小球A受到绳的拉力与小球B受到绳的拉力大小不等
D.小球C受到绳的拉力与小球D受到绳的拉力大小相等
13、密闭容器内封有一定质量的理想气体,图像如图所示,从状态a开始变化,经历状态b、状态c,最后回到状态a完成循环。下列说法正确的是( )
A.气体在由状态a变化到状态b的过程中放出热量
B.气体在由状态b变化到状态c的过程中,内能增加
C.气体从状态a完成循环回到状态a的过程中,向外界放出热量
D.气体从状态c变化到状态a的过程中,单位时间撞击单位面积容器壁的分子数增加
14、某自发电门铃原理如图。N匝线圈绕在固定的铁芯上,初始时右侧强磁铁S极与线圈铁芯接触。按下门铃时,右侧强磁铁上N极与铁芯接触,同时内部电路接通工作。当有磁极与铁芯接触时线圈内磁感应强度为B,线圈截面积为S,则设转换接触时间为,则线圈产生的感应电动势为( )
A.
B.
C.
D.
15、宇宙间是否存在暗物质是物理学之谜,对该问题的研究可能带来一场物理学的革命.为了探测暗物质,我国在2015年12月17日成功发射了一颗被命名为“悟空”的暗物质探测卫星.已知“悟空”在低于同步卫星的轨道上绕地球做匀速圆周运动,经过时间t(t小于其运动周期),运动的弧长为L,与地球中心连线扫过的角度为θ(弧度),引力常量为G,则下列说法中正确的是
A.“悟空”的质量为
B.“悟空”的环绕周期为
C.“悟空”的线速度大于第一宇宙速度
D.“悟空”的向心加速度小于地球同步卫星的向心加速度
16、“投壶”是中国古代士大夫宴饮时做的一种投掷游戏。如图所示,若将投壶用的箭(质量均相等)视为质点,投壶时箭距壶口的高度为,与壶边缘的最近水平距离为
,壶的口径为
。若将箭的运动视为平抛运动,假设箭都投入壶中,重力加速度为
,则( )
A.若箭的初速度为,则
B.箭落入壶中前瞬间重力的功率不相同
C.箭投入壶中时,最大速度与最小速度之比为
D.箭从抛出到刚落入壶的整个过程中动量的变化量都相同
17、某同学在商场购买了一个“水晶玻璃半球”(半径为R),欲利用所学的光学知识探究该“水晶玻璃半球”的光学性质。O点是匀质玻璃半球体的球心。平面水平放置,现用一束红光从距离口点为的C点入射至玻璃半球内,光线与竖直方向的夹角为θ,当θ=0°时光线恰好在球面发生全反射,若只考虑第一次射到各表面的光线,光在真空中传播的速率为c,则下列说法正确的是( )
A.该玻璃半球对红光的折射率为
B.红光在玻璃半球中传播速度为
C.调整角θ,若要使红光从球形表面出射后恰好与入射光平行,则θ=37°
D.θ=0°时用绿光从C点入射至玻璃半球内,光线不能在球面发生全反射
18、如图所示,某同学做机器小蜘蛛爬行模拟实验。小蜘蛛可沿竖直面内四分之一圆弧从底部O向顶部A缓慢爬行,同时小蜘蛛受到水平向右恒定风力的作用。则小蜘蛛从O向A爬行的过程中( )
A.受到的摩擦力一直增大
B.受到的摩擦力一直变小
C.受到的弹力先增大后减小
D.受到的弹力一直增大
19、如图所示,一束光沿AO从空气射入介质中,以O点为圆心画一个圆,与折射光线的交点为B,过B点向两介质的交界面作垂线,交点为N,BN与AO的延长线的交点为M。以O点为圆心,OM为半径画另一圆。则以下线段长度之比等于水的折射率的是( )
A.
B.
C.
D.
20、两根通电直导线a、b相互平行,a通有垂直纸面向里的电流,固定在O点正下方的地面上;b通过一端系于O点的绝缘细线悬挂,且Oa=Ob,b静止时的截面图如图所示。若a中电流大小保持不变,b中的电流缓慢增大,则在b缓慢移动的过程中( )
A.细线对b的拉力逐渐变小
B.地面对a的作用力变小
C.细线对b的拉力逐渐变大
D.地面对a的作用力变大
21、如图所示,一电子枪发射出的电子(初速度很小,可视为零)经过加速电场加速后,垂直射入偏转电场,射出后偏转位移为Y,要使偏转位移增大,我们可以适当_________偏转电压U或适当_________加速电压U0。(两空均填“增大”或“减小”)
22、波能绕过障碍物而继续传播的现象叫做波的________。在利用发波水槽观察此现象的实验中,得到如图所示的两幅照片,观察这两幅照片,你得到的结论是:_________________________________________________________。
23、用游标卡尺测得某材料的长度如图甲所示,读数L=______;用螺旋测微器测得该材料的直径D如图乙所示,读数D=______
;
24、如图,透明半球体的圆心为O,半径为R,折射率为,在半球体的轴线O'O. 上有一点光源S,它发出一细光束射向半球体上的A点,光東经半球体折射后从B点射出。已知SA与SO、OB与OO'之间的夹角均为60° ,光在真空中的传播速度为c,则AB与SO之间的夹角为_____, 光从A点传播到B点所用的时间为___________.
25、“用DIS测电源电动势和内电阻”的实验中,某同学测得电源的路端电压U随电流I的拟合图线如图所示。则该电源的电动势为_____V,内阻为_____Ω。
26、如图所示,当电阻为R 时,电流表读数为I,换成3R 之后,电流表读数为,换成 3R 时的电压与电阻为R 时的电压之比为______,电源电动势为______。
27、如图所示,用碰撞实验器可以验证动量守恒定律,即研究两个小球在水平轨道碰撞前后的动量关系。
安装好实验装置,并记下重垂线所指的位置O。
第一步,不放小球,让小球
从斜槽上某位置由静止滚下,并落在地面上,重复多次,用尽可能小的圆把小球的所有落点圈在里面,其圆心就是小球落点的平均位置。
第二步,把小球放在斜槽末端边缘处,让小球
由第一步中的同一位置静止滚下,使它们碰撞,重复多次,并使用与第一步同样的方法分别标出碰撞后两小球落点的平均位置。
第三步,用刻度尺分别测量三个落地点的平均位置离O点的水平距离,即线段、
、
的长度。在上述实验中:
(1)在不放小球时,小球
从斜槽某处由静止开始滚下,
的落点在图中的_______点,把小球
放在斜槽末端边缘处,小球
从斜槽相同位置处由静止开始滚下,使它们发生碰撞,碰后小球
的落点在图中的_______点。
(2)直接测定小球碰撞前后的速度是不容易的。可以通过测量________间接地解决这个问题。
A.小球开始释放高度h B.小球抛出点距地面的高度H C.小球做平抛运动的水平射程
(3)本实验中小球1的质量与小球2的质量
大小应满足的关系________。
(4)碰撞的恢复系数的定义为,其中
和
分别是碰撞前两物体的速度,
和
分别是碰撞后两物体的速度。用刻度尺分别测量三个落地点的平均位置离O点的距离,即线段
、
、
的长度分别为
、
、
,则该实验的恢复系数
________。(结果保留三位有效数字)
28、如图所示,某建筑工地上一倾角的传送带两端长4.5米,以速度
沿顺时针方向匀速转动,现将一质量
的物块轻轻地放在传送带的底端的同时对物块施加一沿传送带向上的恒力
,物块运动到传送带的顶端时恰好与传送带速度相同,重力加速度
,
,
。求:
(1)物块与传送带间的动摩擦因数;
(2)若保持其它条件不变的情况下,第二次此恒力从底端开始作用
后撤去,则
末物块速度多大?
29、如图所示,轻弹簧一端固定在与斜面垂直的挡板上,另一端点在O位置。质量为m的物块A(可视为质点)以初速度v0从斜面的顶端P点沿斜面向下运动,与弹簧接触后压缩弹簧,将弹簧右端压到O'点位置后,A又被弹簧弹回。物块A离开弹簧后,恰好回到P点。已知OP的距离为x0,O点和O'点间的距离x=,物块A与斜面间的动摩擦因数为
,斜面倾角为θ,重力加速度为g,求:
(1)物体下滑的初速度v0:
(2)弹簧在最低点O'处的弹性势能。
30、如图所示,水平面上有A、B两个小物块(均视为质点),质量均为,两者之间有一被压缩的轻质弹簧(未与A、B连接)。距离物块A为L处有一半径为L的固定光滑竖直半圆形轨道,半圆形轨道与水平面相切于C点,物块B的左边静置着一个三面均光滑的斜面体(底部与水平面平滑连接)。某一时刻将压缩的弹簧释放,物块A、B瞬间分离,A向右运动恰好能过半圆形轨道的最高点D(物块A过D点后立即撤去),B向左平滑地滑上斜面体,在斜面体上上升的最大高度为L(L小于斜面体的高度)。已知A与右侧水平面的动摩擦因数
,B左侧水平面光滑,重力加速度为
,求:
(1)物块A通过C点时对半圆形轨道的压力大小;
(2)斜面体的质量。
31、2022年2月8日,我国选手谷爱凌在第24届冬季奥林匹克运动会女子自由式滑雪大跳台比赛中获得冠军。其从参赛滑道上a点从静止开始下滑,至d点飞出,然后做出空翻、抓板等动作,在de段的水平区域上落地并滑到安全区域。其中ab段和cd段的倾角均为,ab段长
,水平段bc长
,
坡高
。设滑板与滑道之间的动摩擦因数为
,不考虑转弯b和c处的能量损失,运动员连同滑板整体可视为质点,其总质量
。忽略空气阻力,g取10m/s2,
,
。求:
(1)运动员在ab段运动的加速度大小;
(2)运动员从d点飞出时的速度大小。
32、如图所示为某型号家用喷水壶的外形图和原理图,壶中气筒内壁的横截面积,活塞的最大行程为
,正常喷水时壶内气体压强需达到
以上。壶内装水后,将压柄连接的活塞压到气筒的最底部,此时壶内气体体积为
,压强为
,温度为27°C.已知大气压强
。
(1)将喷水壶放到室外,室外温度为12°C,求稳定后壶内气体的压强;
(2)在(1)问情况下且温度保持不变,为了使喷水壶达到工作状态,至少需要通过压柄充气多少次?