1、弩是利用张开的弓弦急速回弹形成的动能,高速将箭射出。如图所示,某次发射弩箭的瞬间,两端弓弦的夹角为90°,弓弦上的张力大小为FT,则此时弩箭受到的弓弦的作用力大小为( )
A.
B.
C.
D.
2、我国时速600公里的高速磁悬浮试验样车在青岛下线。在某次制动测试过程中,试验样车做匀减速直线运动直到速度为零。用t、x、v、a分别表示样车运动的时间、位移、速度和加速度。关于样车的运动,下列图像不正确的是( )
A.
B.
C.
D.
3、在“探究变压器原、副线圈电压与匝数关系”实验中,装置如图所示,原线圈的“0”和“4”两个接线柱接学生电源交流4V,下列操作可使交流电压表示数变大的是( )
A.原线圈改接直流6V
B.取下变压器上部的铁芯
C.将电源改接原线圈的“0”和“1”两个接线柱
D.将电压表改接副线圈的“2”和“8”两个接线柱
4、保护环境是可持续发展的前提,被污染的核废水中含有大量的放射性物质,其中包括碘-129、铯-137、碳-14等,排放到海中会破坏环境影响生态平衡。下列说法正确的是( )
A.碘-129的半衰期约为1570万年,海水的低温可使其半衰期变得更长
B.已知铯-137的衰变方程为可判断此衰变属于β衰变
C.碳-14的半衰期约为5730年,碳-14的污染经过约11460年能够消失
D.由于具有放射性,说明这些放射性元素原子核的比结合能较大
5、一定质量的理想气体从状态A缓慢经过B、C、D再回到状态A,其热力学温度T和体积V的关系图像如图所示,BA和CD的延长线均过原点O,气体在状态A时的压强为,下列说法正确的是( )
A.过程中气体向外界放热
B. 过程中气体分子的平均动能不断增大
C.过程中气体分子在单位时间内对容器壁的碰撞次数不断减少
D.过程中气体的温度升高了
6、某波源O发出一列简谐横波,其振动图像如图所示。在波的传播方向上有M、N两点,它们到波源O的距离分别为4m和5m。测得M、N开始振动的时间间隔为1.0s。则( )
A.这列波的波速为9m/s
B.这列波的诐长
C.当N点离开平衡位置的位移为10cm时,M点正在平衡位置
D.M、N的速度始终相同
7、如图所示,一绝缘轻质细绳悬挂一质量为m、电量为q的带电小球静止于水平向左足够大的匀强电场中,已知电场强度大小
。现使匀强电场保持场强大小不变,方向在纸面内缓慢逆时针转动30°,则在该过程中(已知重力加速度为g,轻绳与竖直方向的夹角设为θ)( )
A.θ先增大后减小
B.θ最小值为30°
C.电场力不做功
D.轻绳拉力最小值为
8、自然界中物体的运动是多种多样的。关于运动与力的关系,下列说法正确的是( )
A.运动的物体,一定受到力的作用
B.做曲线运动的物体,一定受到力的作用
C.物体受到的力越大,它的速度就越大
D.物体在恒力的作用下,不可能做曲线运动
9、如图所示,理想变压器的原、副线圈匝数比,原线圈电路中接入正弦交流电压
,电流表为理想交流电表。已知
,
,开关S闭合前、后电流表示数之比为2∶3。下列说法正确的是( )
A.定值电阻R2=5Ω
B.开关S闭合时,副线圈两端的电压为110V
C.开关S断开时,电流表的示数为11A
D.开关S闭合时,电路中消耗的总功率为2420W
10、如图所示电路,电源内阻不可忽略。开关S闭合后,在滑动变阻器的滑片向上移动的过程中(电压表和电流表均可视为理想电表)( )
A.电压表的示数减小
B.电流表的示数减小
C.电源的总功率增大
D.电源内阻消耗的电功率减小
11、如图甲所示是某电场中的一条电场线,A、B是这条电场线上的两点,一带正电的粒子只在静电力作用下,沿电场线从A运动到B。在这过程中,粒子的速度-时间图像如图乙所示,比较A、B两点电场强度大小和电势的高低,下列说法正确的是( )
A.EA=EB,φA>φB
B.EA<EB,φA<φB
C.EA=EB,φA<φB
D.EA>EB,φA<φB
12、图甲是半圆柱形玻璃体的横截面,一束紫光从真空沿半圆柱体的径向射入,并与底面上过O点的法线成角,CD为足够大的光学传感器,可以探测从AB面反射光的强度。若反射光强度随
变化规律如图乙所示,取
,
,则下列说法正确的是( )
A.该紫光在半圆柱体中的折射率为
B.减小到0时,光将全部从AB界面透射出去
C.减小时,反射光线和折射光线夹角随之减小
D.改用红光入射时,CD上探测到反射光强度最大值对应的
13、我国“嫦娥二号”月球探测器在完成绕月任务后,又进入到如图所示“日地拉格朗日点”轨道进行新的探索试验,“嫦娥二号”在该轨道上恰能与地球一起同步绕太阳做圆周运动。若“嫦娥二号”的角速度和向心加速度分别是和
,地球的角速度和向心加速度分别
和
,则正确的关系是( )
A.,
B.,
C.,
D.,
14、图(a)为某景区的蛙口喷泉,两次喷出水的轨迹A、B如图(b)所示,最大高度相同,轨迹A的落点M恰好在轨迹B最高点的正下方,不计空气阻力,对轨迹A、B的说法正确的是( )
A.水滴在空中运动的时间不相同
B.水滴的初速度大小相等
C.水滴在最高点速度均为0
D.质量相同的水滴在空中运动过程中动量的变化量相同
15、王老师在课堂上演示绳波的传播过程,他握住绳上的A点上下振动,某时刻绳上波形如图则绳上A点的振动图像正确的是( )
A.
B.
C.
D.
16、2023年4月12日,中国“人造太阳”全超导托卡马克核聚变实验装置(EAST)创下新纪录,实现403秒稳态长脉冲高约束模等离子体运行,为可控核聚变的最终实现又向前迈出了重要的一步。氘氚核聚变的核反应方程为,已知氘核、氚核、α粒子和X的质量分别为m1、m2、m3、m4,c为真空中的光速,则( )
A.核反应方程中X为质子
B.核反应方程中X为电子
C.氘氚核聚变释放的能量
D.氘氚核聚变释放的能量
17、甲、乙两物体在同一水平直线上运动,其位置坐标x随时间t变化的图像如图所示,甲为抛物线,乙为直线,下列说法正确的是( )
A.前3s内甲、乙两物体的平均速率相等
B.t=0时,甲物体x—t图像的斜率为3m/s
C.前3s内甲、乙的运动方向始终相同
D.前3s内甲、乙两物体的最大距离为1m
18、2023年5月29日消息,经空间站应用与发展阶段飞行任务总指挥部研究决定,神舟十六号航天员乘组由指令长景海鹏、航天飞行工程师朱杨柱、载荷专家桂海潮3名航天员组成。设神舟十六号(包括三名航天员)的总质量为m,地球半径为R,神舟十六号与空间站对接后绕地球做圆周运动的轨道距地球表面高为h,运行周期为T,以宇宙中无穷远处为零势能点,神舟十六号在距地球表面高为h处的引力势能为,其中G为引力常量,M为地球的质量。忽略地球自转及空气阻力,下列说法正确的是( )
A.神舟十六号与空间站对接后绕地球做圆周运动的线速度大于
B.地球的密度等于
C.神舟十六号与空间站对接后绕地球做圆周运动时神舟十六号机械能为
D.神舟十六号从开始发射到与空间站对接过程中,需要对神舟十六号做的功为
19、如图所示是商场中由等长的车厢连接而成、车厢间的间隙忽略不计的无轨小火车,一小朋友站在第一节车厢前端,火车从静止开始做匀加速直线运动,则火车( )
A.在相等的时间里经过小朋友的车厢数之比是
B.第1、2、3节车厢经过小朋友的时间之比是
C.第1、2、3节车厢尾经过小朋友瞬间的速度之比是
D.火车中间位置经过小朋友的瞬时速度大于火车通过小朋友的平均速度
20、如图甲所示,计算机键盘为电容式传感器,每个键下面由相互平行间距为d的活动金属片和固定金属片组成,两金属片间有空气间隙,两金属片组成一个平行板电容器,如图乙所示。其内部电路如图丙所示,已知平行板电容器的电容可用公式计算,式中k为静电力常量,
为相对介电常数,S表示金属片的正对面积,d表示两金属片间的距离,只有当该键的电容改变量大于或等于原电容的50%时,传感器才有感应,则下列说法正确的是( )
A.按键的过程中,电容器的电容减小
B.按键的过程中,图丙中电流方向从b流向a
C.欲使传感器有感应,按键需至少按下
D.欲使传感器有感应,按键需至少按下
21、万有引力定律中的常量G是由科学家卡文迪什通过_________实验测得的;宇宙飞船返回过程中若质量保持不变,则其所受地球的万有引力将_________。(选填“变大”或“变小”或“不变”)
22、某班级开展了一次10分钟实验竞赛,试题命题形式为各小组自已出题,然后交到老师那进行审核,并汇总在一起,在某自习课进行随机抽取试题比赛,某小组在本次实验竞赛中,抽到的试题为:
(1)若用主尺的最小分度是1mm,游标上有20个小的等分刻度的游标卡尺测量某一器件的长度时,显示如图甲所示,则该游标卡尺的读数为 mm.
(2)现有一多用电表,其欧姆挡的“0”刻度线与中值刻度线问刻度模糊,若用该欧姆挡的×100Ω挡,经正确调零后,规范测量某一待测电阻R时,指针所指的位置与“0”刻度线和中值刻度线间的夹角相等,如图乙所示,则该待测电阻R= Ω.
23、某天体的质量约为地球的,半径约为地球的3倍,则天体和地球的重力加速度之比为________,若在该天体上,和地球从同样高度以同样速度平抛同一物体,水平位移之比为________。
24、地球半径为6400km,上海位于北纬附近,东方明珠随地球自转的角速度为__rad/s,线速度为____m/s.
25、 游标卡尺和螺旋测微器是较为精密的长度测量仪器,请回答下列问题:
(1)图1中螺旋测微器的其读数为__________。
(2)图2中游标卡尺的读数为_________。
26、一列沿x轴传播的简谐横波在t=0时刻的波形图如图所示,此时质点Q沿y轴负方向运动,质点P的纵坐标为。经1s质点Q第一次到达波谷位置,则质点P振动的周期为______s,该简谐横波沿x轴______(填“正”或“负”)方向传播,质点P从t=0时刻开始经经______s 第一次运动到波谷。
27、图1是演示简谐运动图象的装置,它由一根较长的细线和一个较小的沙漏组成.当沙漏摆动时,若将沙漏下方的木板匀速拉出,漏出的沙在板上会形成一条曲线.通过对曲线的分析,可以确定沙漏的位移随时间变化的规律.图2是同一个沙漏分别在两块木板上形成的曲线.
①沙漏在木板1上形成曲线OA段经历的时间_________(填“大于”、“等于”或“小于”)沙漏在木板2上形成曲线O′A′段经历的时间.
②经测量发现,若木板1运动的速度大小为
,木板2运动的速度大小为
,则(________)
A. B.
C.
D.
28、如图所示是一种粒子探测装置,半径为R的圆形区域内有垂直于纸面向外的匀强磁场,单位时间内有N个质量为m,电荷量大小为q,速度大小范围为的粒子从PM和QK间平行于PM射入圆形磁场区域,PM与圆心O在同一直线上,PM和QK间距离为
。已知从M点射入的速度为
的粒子刚好从O点正下方的N点射出圆形磁场区域。挡板ND下方有磁感应强度为圆形磁场2倍、方向垂直于纸面向里的匀强磁场,
,直线ND与圆形区域相切于N点,到达N点的粒子均能进入下方磁场。挡板ND上表面绝缘,下表面导电且可完全吸收到达的粒子,下表面通过一灵敏电流计接地。不计粒子重力以及粒子间的相互作用。求:
(1)圆形区域磁场的磁感应强度B及带电粒子的电性;
(2)已知灵敏电流计电流大小为I,则PQ间入射粒子中速度为的粒子的比例
;
(3)圆形磁场区域边界上有粒子射出的弧长长度;
(4)若ND可以绕N点顺时针转动(0~90°),求ND挡板下表面有粒子打到的长度L与ND转过角度的关系,并求当转过多少角度时粒子打到的长度最大及长度具体值?
29、将一带电小圆环A套在足够长的水平光滑绝缘细杆上,细杆处在磁感应强度B =0.5 T方竖直向下的匀强磁场中(其俯视图如图所示),先用一锁定装置将小圆环锁定在杆上,让小圆环与杆一起以v0=3 m/s的速度沿垂直杆的方向水平向右匀速运动。当细杆运动到M位置时,将圆环的锁定解除(即圆坏可沿细杆自由滑动),已知小球的电荷量为q= +2.0×10-3 C, m = 1.0×10-3kg,试求:
(1)解除锁定瞬间圆环的加速度大小;
(2)圆环解除锁定后,细杆在外力F作用下继续向右以原来的速度匀速运动,运动了4 m到达 N位置,此时则环的速度大小以及该过程外力F做的功。
30、如图所示,一木箱(可视为质点)放在汽车水平车厢的最前部。已知木箱与汽车车厢底板之间的动摩擦因数为。初始时,汽车和木箱都静止。现在汽车以恒定的加速度
开始启动并沿直线运动,当汽车的速度达到v0后,便以速度v0做匀速直线运动。经过一段时间木箱相对汽车静止,此时木箱刚好在汽车车厢的尾部(重力加速度为g)。求:
(1)汽车水平车厢的长度;
(2)木箱相对汽车静止时,汽车前方出现障碍物,驾驶员又立即刹车使车做匀减速直线运动并安全停下,加速度大小为,那么最终木箱会与车头碰撞吗?若碰撞,木箱碰撞时的速度大小为多少;若不碰撞,木箱静止时与车头的距离为多少。
31、质量为m=1kg、大小不计的物块,在水平桌面上向右运动,经过O点时速度为v=4 m/s,此时对物块施加F=6 N的方向向左的拉力,一段时间后撤去拉力,物块刚好能回到O点.已知与桌面间动摩擦因数为μ=0.2,重力加速度g=10 m/s2.求:
(1)物块向右运动过程中的加速度;
(2)物块向右运动的最远距离及所用时间;
(3)撤去F时,物块到O点的距离.
32、如图(甲)所示半径R=0.8m的光滑圆弧轨道固定在竖直平面内,B为轨道的最低点,B点右侧的光滑的水平面上紧挨B点有静止的小平板车,平板车质量M=2kg,长度l=1m,小车的上表面与B点等高,质量m=2kg的物块(可视为质点)从圆弧最高点A由静止释放,取g=10m/s2。
(1)求物块滑到轨道上的B点时对轨道的压力;
(2)若物块与平板车间的动摩擦因数为0.3,求物块从平板车右端滑出时平板车的速度大小;
(3)若锁定平板车并在上表面铺上一种特殊材料,其动摩擦因数从左向右随距离均匀变化如图(乙)所示,求物块滑离平板车时的速率。