1、如图所示,真空中M、N、O三点共线,MN、NO之间的距离分别为3L、L,N点固定电荷量为的点电荷,当M点也放置一点电荷后,在它们共同形成的电场中,电势为零的等势面(取无穷远处电势为零)恰好是以O点为球心的球面。已知点电荷周围某点的电势为
,r为该点到点电荷的距离,Q为场源电荷的电荷量。则放置在M点的点电荷的电荷量为( )
A.q
B.2q
C.3q
D.4q
2、2023年09月21日在距离地球400公里的中国空间站,3位“太空教师”在“天宫课堂”进行了第四课授课,神舟十六号航天员在实验舱演示了钢球在太空舱中的悬停现象。则针对悬停的钢球有( )
A.由于钢球悬停不动,可见太空舱里重力加速度为零
B.钢球围绕地球做匀速圆周运动,比地面赤道上的物体转动快
C.钢球围绕地球做匀速圆周运动,它离地的高度比地球同步卫星高
D.由于钢球悬停不动,钢球所在的太空舱里无法称物体的质量
3、如图所示,一个带有挡板的光滑斜面固定在地面上,斜面倾角为θ,轻弹簧的上端固定于挡板,下端连接滑块P,开始处于平衡状态。现用一平行于斜面向下的力F作用在P上,使滑块向下匀加速(a<gsinθ)运动一段距离。以x表示P离开初位置的位移,t表示P运动的时间,E表示P的机械能(设初始时刻机械能为零),重力加速度为g,则下列图像可能正确的是( )
A.
B.
C.
D.
4、据中国载人航天工程办公室消息,中国空间站已全面建成,我国载人航天工程“三步走”发展战略已从构想成为现实。目前,空间站组合体在轨稳定运行,神舟十五号航天员乘组状态良好,计划于今年6月返回地面。空间站运行期间利用了我国的中继卫星系统进行信号传输,天地通信始终高效稳定。已知空间站在距离地面400公里左右的轨道上运行,其运动视为匀速圆周运动,中继卫星在距离地面36000公里左右的地球静止轨道上运行,则下列说法正确的是( )
A.中继卫星可能经过合肥正上空
B.空间站运行的角速度与中继卫星角速度大小相同
C.在空间站内可以用水银体温计测量宇航员体温
D.在实验舱内由静止释放一小球,测量小球下落的高度和时间可计算出实验舱所在轨道处的重力加速度
5、如图所示,用细线将重力为100N的物块悬挂在O点,在物块上施加力F,在力F由水平方向逆时针缓慢转至竖直方向的过程中,物块始终处于静止状态,且细线与竖直方向成30°角,则力F的最小值为( )
A.0
B.50N
C.
D.
6、截至2023年11月,潮州市在各个公共场所已配备超过200台AED(自动体外除颤器),可在第一时间为突发心脏骤停者进行电除颤以恢复心律,被称为“救命神器”。某除颤器的电容器在1分钟内充电至
,抢救病人时,电流通过电极板放电进入人体,一次完全放电时间为
,忽略电容器放电时人体的电阻变化,下列说法正确的是( )
A.充电过程电流大小保持不变
B.充电后电容器的带电量为
C.放电过程电容器的电容会越来越小
D.放电过程的平均电流为
7、质子在加速器中加速到接近光速后,常被用来与其他粒子碰撞。下列核反应方程中,X代表电子的是( )
A.
B.
C.
D.
8、用质量为m的光滑活塞将导热汽缸内的理想气体与外界隔离开,汽缸的质量为2m,若用细绳连接活塞,把该整体悬挂起来(如图1所示),活塞距缸底的高度为H,若用细绳连接汽缸缸底,也把该整体悬挂起来(如图2所示),活塞距缸底的高度为h。设环境温度不变,大气压强为p,且,S为活塞的横截面积,g为重力加速度,则H与h之比为( )
A.
B.
C.
D.
9、如图所示,空间有一正三棱锥点是
边上的中点,
点是底面
的中心,现在顶点
点固定一正的点电荷,在
点固定一个电荷量与之相等的负点电荷。下列说法正确的是( )
A.三点的电场强度相同
B.底面为等势面
C.将一负的试探电荷从点沿直线
经过
点移到
点,静电力对该试探电荷先做负功再做正功
D.将一负的试探电荷从点沿直线
移动到
点,电势能先增大后减少
10、如图所示,两端封闭的玻璃管在常温下竖直放置,管内充有理想气体,一段汞柱将气体封闭成上下两部分,两部分气体的长度分别为,
,且
,下列判断正确的是( )
A.将玻璃管转至水平,稳定后两部分气体长度
B.将玻璃管转至水平,稳定后两部分气体长度
C.保持玻璃管竖直,使两部分气体升高相同温度,稳定后两部分气体长度
D.保持玻璃管竖直,使两部分气体升高相同温度,稳定后两部分气体长度
11、电位器是用来控制电路的电学器材,其工作原理类似于滑动变阻器,其中P、O、Q为三个接线柱,某电位器的示意图如图所示。若闭合开关S后,将电路中的a、b两点与电位器相连,已知电容器耐压值足够大,下列说法正确的是( )
A.将a、b分别与P、O相连,若滑动触头顺时针滑动,则电容器所带电量增加
B.将a、b分别与O、Q相连,若滑动触头逆时针滑动,则电容器所带电量减小
C.将a、b分别与P、Q相连,若滑动触头顺时针滑动,则电容器所带电量增加
D.将a、b分别与P、Q相连,若滑动触头逆时针滑动,则电容器所带电量减小
12、如图所示,在竖直光滑墙壁上用网兜把足球挂在A点,足球与墙壁的接触点为B。足球的质量为m,悬绳与墙壁的夹角为,网兜的质量不计。下列说法中正确的是( )
A.悬绳对足球的拉力大小为
B.墙壁对足球的弹力大小为
C.足球所受合力的大小为
D.悬绳和墙壁对足球的合力大小为
13、如图所示,透明介质的截面为长方形,某种颜色的光线从边1射入介质,经边2反射后射到边3上,入射光线与边1的夹角为,折射光线与边2的夹角为
,反射光线与边3的夹角为
,该光线对该介质发生全反射的临界角为C,已知
、
,则
为( )
A.75°
B.60°
C.45°
D.30°
14、我国“嫦娥二号”月球探测器在完成绕月任务后,又进入到如图所示“日地拉格朗日点”轨道进行新的探索试验,“嫦娥二号”在该轨道上恰能与地球一起同步绕太阳做圆周运动。若“嫦娥二号”的角速度和向心加速度分别是和
,地球的角速度和向心加速度分别
和
,则正确的关系是( )
A.,
B.,
C.,
D.,
15、如图所示,线圈在匀强磁场中绕垂直于磁场方向的固定轴转动,穿过线圈的磁通量随时间
按正弦规律变化的图像如图所示,线圈转动周期为
,线圈产生的电动势的最大值为
。则( )
A.在时,线圈中产生的瞬时电流最大
B.在时,线圈中的磁通量变化率最小
C.线圈中电动势的瞬时值
D.将线圈转速增大2倍,线圈中感应电动势的有效值增大2倍
16、如图所示,L是自感系数很大的线圈,但其自身的电阻几乎为零,L1、L2是两个相同的灯泡。下列说法正确的是( )
A.当开关S由断开变为闭合时,L1、L2同时发光,然后L2变得更亮,L1逐渐变暗,最终熄灭
B.当开关S由断开变为闭合时,L1先发光,L2后发光,L1亮度不变,L2逐渐变暗,最终熄灭
C.当开关S由闭合变为断开时,L1立即熄灭, L2突然发光,再逐渐变暗,最终熄灭
D.当开关S由闭合变为断开时,L2立即熄灭, L1突然发光,再逐渐变暗,最终熄灭
17、为了测量储罐中不导电液体的高度,有人设计了如图所示装置。将与储罐外壳绝缘的两块平行金属板构成的电容C置于储罐中,电容C可通过单刀双掷开关S与电感L或电源相连。当开关从a拨到b时,由电感L与电容C构成的回路中产生振荡电流。现知道平行板电容器极板面积一定、两极板间距离一定的条件下,当两极板间充入电介质时,电容增大。在该振荡电路中,某一时刻的磁场方向、电场方向如图所示,则下列说法正确的是( )
A.此时电容器正在充电
B.振荡电流正在减小
C.当储罐内的液面高度降低时,回路振荡电流的频率升高
D.当开关从a拨到b时开始计时,经过时间t,电感L上的电流第一次达到最大,则该回路中的振荡周期为2t
18、用氢原子由m、n能级跃迁到基态释放的光子,分别照射同一光电管时,测得的光电流与电压的关系图像如图中的1、2两条曲线所示,已知m、n能级对应的原子能量分别为、
,电子电荷量的绝对值为e,则下列说法正确的是( )
A.
B.1、2两种情况下产生的光电子最大初动能之比为
C.1、2两种情况下单位时间内逸出的光电子数之比为
D.氢原子吸收能量为的光子可由m能级跃迁到n能级
19、如图为某实验小组设计的家用微型变压器的原理图,原、副线圈的匝数比,a、b两端接入正弦交流电,
和
是两个完全相同的灯泡,灯泡上标有“55W, 1A”字样,若两灯泡恰好正常发光,该变压器视为理想变压器,则图中理想电流的示数为( )
A.0.5A
B.1A
C.2A
D.4A
20、如图所示,利用霍尔元件可以监测无限长直导线的电流。无限长直导线在空间任意位置激发磁场的磁感应强度大小为:,其中k为常量,I为直导线中电流大小,d为空间中某点到直导线的距离。霍尔元件的工作原理是将金属薄片垂直置于磁场中,在薄片的两个侧面a、b间通以电流
时,e、f两侧会产生电势差。下列说法正确的是( )
A.该装置无法确定通电直导线的电流方向
B.输出电压随着直导线的电流强度均匀变化
C.若想增加测量精度,可增大霍尔元件沿磁感应强度方向的厚度
D.用单位体积内自由电子个数更多的材料制成霍尔元件,能够提高测量精度
21、疫情期间,医院内的氧气用量增多,某医院将运输到医院的氧气瓶由寒冷的室外搬到温暖的室内,放置一段时间后,不计温度对氧气瓶体积的影响,瓶内氧气的内能___________(选填“增大”或“减小”),瓶内氧气分子在单位时间内对氧气瓶单位面积的撞击次数___________(选填“增多”或“减少”)。
22、探究弹力和弹簧伸长的关系时,在弹性限度内,悬挂15 N重物时,弹簧长度为0.16 m,悬挂20 N重物时,弹簧长度为0.18 m,则弹簧的原长L0和劲度系数k分别为L0=________ m,k=________ N/m
23、竖直上抛的物体其初速度为v0,设空气阻力在运动中大小始终为重力的k倍(0<k<1),重力加速度为g,则物体能上升的最大高度是____________,物体从最高点落回抛出点的时间是_____________。
24、如图所示,一个竖直放置半径为R的半圆形轨道ABC,B是最低点,AC与圆心O在同一水平高度,圆弧AB表面是光滑的,圆弧BC表面是粗糙的。现有一根长也为R、质量不计的细杆EF,上端连接质量为m的小球E,下端连接质量为2m的小球F。E球从A点静止释放,两球一起沿轨道下滑,当E球到达最低点B时速度刚好为零。在下滑过程中,F球经过B点的瞬时速度大小是________,在E球从A运动到B的过程中,两球克服摩擦力做功的大小是________。
25、如图甲所示为一列简谐横波在时的波形图像,图乙为质点
的振动图像,质点
在
时速度方向为沿
轴______(选填“正”或“负”)方向;该波沿
轴______(选填“正”或“负”)方向传播。
26、一卡诺热机的效率为30%,设每一循环中从500K的高温热源吸热900J,则每一循环放出的热量QC=___________,低温热源的温度TC=___________。
27、研究小车做匀变速直线运动的实且在装置如图(a).纸带上计数点的间距如图(b),相邻计数点的时间间隔为T,计数点O至其它各计数点的距离为xi(其中i=1、2、3………).
(1)部分实验步骤如下,其中错误的有__________;
A.把打点计时器固定在平板上,让纸带穿过限位孔
B.必须抬高木板右端,平衡摩擦力
C.将小车尾部与纸带相连,小车停靠在打点计时器附近
D.先释放小车,后接通电源
(2)用x3、x5和T表示计数点4对应的小车速度大小为v4=__________;
(3)用x3、x6和T表示小车加速度的大小为a=__________.
28、如图所示,直线形挡板与半径为
的圆弧形挡板
平滑连接并安装在水平台面
上,挡板与台面均固定不动。线圈
的匝数为
,其端点
、
通过导线分别与电阻
和平行板电容器相连,电容器两极板间的距离为
,电阻
的阻值是线圈
阻值的2倍,其余电阻不计,线圈
内有一面积为
、方向垂直于线圈平面向上的匀强磁场,磁场的磁感应强度
随时间均匀增大。质量为
的小滑块带正电,电荷量始终保持为
,在水平台面上以初速度
从
位置出发,沿挡板运动并通过
位置。若电容器两板间的电场为匀强电场,
、
在电场外,间距为
,其间小滑块与台面的动摩擦因数为
,其余部分的摩擦不计,重力加速度为
。求:
(1)小滑块通过位置时的速度大小。
(2)电容器两极板间电场强度的取值范围。
(3)经过时间,磁感应强度变化量的取值范围。
29、如图所示,粗细均匀的U型玻璃管竖直放置,右管口封闭,管内A、B两段水银柱将管内封闭有长均为的a、b两段气体,水银柱A长为
,水银柱B在右管中的液面比在左管中的液面高
,大气压强为
,环境温度为
,现将环境温度降低,使气柱b长度变为
,求:
(1)降低后的环境温度;
(2)水银柱A下降的高度。
30、如图甲所示,M、P、N为直角三角形的三个顶点,NM与MP间的夹角,MP中点处固定一电荷量为Q的正点电荷,粗糙绝缘杆MN的长
,沿MN方向建立x轴(取M点处
),今在杆上穿一带正电小球(可视为点电荷),自N点由静止释放,小 球的重力势能和电势能随位置
的变化图象如图乙(a)、(b)所示,图中电势能
,
已知小球的电荷量
,质量m=1.0kg,取
,
重力加速度g=10m/s2
(1)若小球下滑至图中横坐标处时,杆对它的弹力恰好为零,求固定在中点处正点电荷的电荷量Q;
(2)求小球在横坐标处的电势能
;
(3)若该小球从M点以初速度沿
轴向上运动,恰好能运动到N点,然后再返回到M点,求小球返回到M点时的动能
31、如图所示,在竖直平面内倾角 θ= 37º的粗糙斜面AB、粗糙水平地面BC、光滑半圆轨道CD平滑对接,CD为半圆轨道的竖直直径。BC长为l,斜面最高点A与地面高度差h=1.5l。轨道CD的半径R=。质量为m的小滑块P从A点静止释放,滑块P与AB、BC轨道间的滑动摩擦因数为μ=
。在C点静止放置个质量也为m的小球Q,滑块P如果能与小球Q发生碰撞,二者没有机械能损失。已知重力加速度为g,sin37º= 0.6,cos37º =0.8求:
(1)滑块P与Q碰撞前瞬间速度的大小;
(2)碰后小球Q运动到D点时对轨道压力的大小;
(3)如果小球Q 的质量变为km(k为正数),小球Q通过D点后能够落在斜面AB上,求k的最大值。
32、如图所示,BCDG是光滑绝缘的圆弧轨道,位于竖直平面内,轨道半径为R,下端与水平绝缘轨道在B点平滑连接,整个轨道处在水平向左的匀强电场中。现有一质量为m、带正电的小滑块(可视为质点)置于水平轨道上,滑块受到的静电力大小为
mg,滑块与水平轨道间的动摩擦因数为0.5,重力加速度为g。
(1)若滑块从水平轨道上距离B点s=3R的A点由静止释放,求滑块到达与圆心O等高的C点时对轨道的作用力大小;
(2)为使滑块恰好始终沿轨道BCDG滑行(不脱离轨道),且从G点飞出,求滑块在圆弧轨道上滑行过程中的最小速度。