1、如图所示,在距离竖直墙面为L=1.2m处,将一小球水平抛出,小球撞到墙上时,速度方向与墙面成θ= 37°,不计空气阻力.墙足够长,g取10m/s2,sin37°=0.6,cos37°=0.8,则( )
A.球的初速度大小为3m/s
B.球撞到墙上时的速度大小为4m/s
C.若将初速度变为原来的一半,其他条件不变,小球可能不会撞到墙
D.将初速度变为原来的2倍,其他条件不变,小球撞到墙上的点上移了0.3m
2、如图所示,一架质量为的喷气式飞机飞行的速率是
,某时刻它向后喷出的气体相对飞机的速度大小为
,喷出气体的质量为
,以地面为参考系,下列说法正确的是( )
A.若,则喷出气体的速度方向与飞机飞行方向相同,喷气后飞机速度不会增加
B.只有,喷气后飞机速度才会增加
C.喷气后飞机速度为
D.喷气后飞机增加的速度为
3、在探究库仑力大小与哪些因素有关的实验中,小球A用绝缘细线悬挂起来,小球B固定在绝缘支架上,B球在悬点O的正下方,两球带电后平衡在如图所示位置。若经过一段时间,由于漏电,小球A的高度缓慢降低了一些,关于悬线对A球的拉力FT大小和两球间库仑力F大小,下列判断正确的是( )
A.FT变小,F变小
B.FT不变,F变小
C.FT变大,F不变
D.FT不变,F不变
4、某款质量的汽车沿平直公路从静止开始做直线运动,其
图像如图所示。汽车在
时间内做匀加速直线运动,
内汽车保持额定功率不变,
内汽车做匀速直线运动,最大速度
,汽车从
末开始关闭动力减速滑行,
时刻停止运动。已知,
,汽车的额定功率为
,整个过程中汽车受到的阻力大小不变。下列说法正确的是( )
A.时刻的瞬时速度
B.汽车在内通过的距离
C.为
D.阻力大小为
5、如图所示,两带电小球1、2用绝缘丝线拴接在天花板上,当系统平衡时,小球1、2处在同一水平线上,两丝线与竖直方向的夹角分别为α=45°、β=30°,忽略空气的阻力。某时刻两丝线同时断裂,整个过程保持两小球所带的电荷量不变,则下列说法正确的是( )
A.小球1、2的电荷量之比为1∶3
B.小球1、2的质量之比为
C.小球1、2的落地点到释放点的水平距离之比为
D.小球1、2落地瞬间的速度大小之比为
6、下列物理量是标量的是( )
A.冲量
B.动量
C.电场强度
D.电势
7、如图所示,虚线a、b、c表示电场中三个等势面,且相邻等势面之间的电势差相等。实线为一带正电的点电荷通过该区域时的运动轨迹,P、Q为轨迹上的两点。下列说法正确的是( )
A.三个等势面中,c的电势最高
B.该点电荷在P点时的电势能比Q点大
C.该点电荷在P点时的动能比Q点大
D.P点的电场强度小于Q点的电场强度
8、如图所示,四个点电荷所带电荷量的绝对值均为Q,分别固定在正方形的四个顶点上,正方形边长为a,则正方形两条对角线交点处的电场强度( )
A.大小为,方向竖直向上
B.大小为,方向竖直向下
C.大小为,方向竖直向上
D.大小为,方向竖直向下
9、如图所示,物块P和Q通过一条跨过光滑轻质定滑轮的细线相连,定滑轮用细杆固定在天花板上的O点,物块P放置于粗糙水平面上,物块Q放置于上表面光滑的斜劈上。整个装置始终处于静止状态时,定滑轮与物块Q间的细线与斜劈平行。物块P的质量是物块Q的2倍,物块P和Q均可视为质点,最大静摩擦力等于滑动摩擦力。缓慢向右移动斜劈稍许,整个系统仍能保持静止状态,下列说法正确的是( )
A.物块P与粗糙水平面间的动摩擦因数不小于
B.缓慢移动斜劈过程中,绳给定滑轮的力一定沿杆反方向
C.移动斜劈的过程中,斜劈对物块Q的支持力逐渐增大
D.移动斜劈的过程中,物块P受到的静摩擦力先减小再增大
10、关于电磁场与电磁波,下列说法正确的是( )
A.变化的电场一定会产生电磁波
B.医院里常用紫外线进行病房消毒
C.医院中用来检查人体器官的是射线
D.红外线在真空中传播的速度小于X射线在真空中传播的速度
11、如图所示,一质量为m的带电粒子从P点以垂直于磁场边界方向的速度v射入磁场,穿出磁场时,速度方向与入射方向夹角为θ。设磁感应强度为B、磁场宽度为d。粒子速度始终与磁场垂直,不计粒子所受重力和空气阻力。下列说法正确的是( )
A.在粒子穿越磁场的过程中,洛伦兹力对该粒子做的功不为0
B.在粒子穿越磁场的过程中,洛伦兹力对该粒子的冲量为0
C.该粒子在磁场中运动的时间为
D.该粒子的比荷为
12、如图所示,质量为的小车放在光滑水平面上,小车上用细线悬吊一质量为
的小球(
),用力
水平向左拉小车,使小球和车一起以加速度
向左运动时,细线与竖直方向成
角,此时细线的拉力为
。若仍用力
水平向右拉小球,使小球和车一起以加速度
向右运动时,细线与竖直方向成
角,细线的拉力为
,则下列关系正确的是( )
A.,
B.,
C.,
D.,
13、如图所示,两平行金属导轨(足够长)间接一阻值为R 的定值电阻,导轨与金属棒间的动摩擦因数为0.5,金属棒的质量为m、电阻为,导轨的倾角为37°,导轨电阻忽略不计,金属棒始终与导轨平面垂直且接触良好。匀强磁场的磁感应强度大小为B、方向垂直导轨向上,导轨间距为L。在金属棒从静止开始释放至其速度最大的过程中,通过定值电阻的电荷量为q,重力加速度大小为 g,取
,
,下列说法正确的是( )
A.金属棒的最大速度为
B.此过程中,金属棒沿导轨运动的距离为
C.此过程中,金属棒运动的时间为
D.此过程中,定值电阻和金属棒产生的总热量为
14、我国将一颗失效的北斗二号,从地球同步圆轨道经椭圆轨道运行到“基地轨道”上,该过程的简化示意图如图所示,已知同步卫星轨道半径为
,“基地轨道”半径为
,转移轨道与同步轨道和“基地轨道”分别相切于
、
两点,卫星在转移轨道上从
点运动到
点所需的最短时间为
,已知万有引力常量为
,则下列说法正确的是( )
A.在转移轨道上点的加速度小于在“墓地轨道”上
点的加速度
B.在转移轨道上点的速度与
点速度之比为
C.地球的自转周期为
D.地球质量等于
15、如图所示,在竖直平面内,一个半径为R的四分之一光滑球固定在水平地面上,球心O正上方P处有一光滑的小滑轮,甲、乙通过光滑的细线相连,当PQ间细线的长度与球的半径相等时,PQ与竖直方向的夹角,系统处于静止状态,此时小球甲的质量为
。若小球乙的质量增大为原来的1.5倍,当PQ与竖直方向夹角最大时,系统也能处于静止状态,此时小球甲的质量为
,则( )
A.
B.
C.
D.
16、2023年2月6日,天文学家报告新发现12颗木星卫星,使木星的已知卫星增至92颗。在木星的众多卫星中,盖尼米得、伊奥两颗卫星的轨道均近似为圆,盖尼米得的周期比伊奥的周期大,下列说法正确的是( )
A.盖尼米得的线速度大于伊奥的线速度
B.盖尼米得的角速度大于伊奥的角速度
C.盖尼米得的轨道半径大于伊奥的轨道半径
D.盖尼米得的向心加速度大于伊奥的向心加速度
17、如图所示,两物体质量分别为M、m,且M>m,水平桌面光滑,不计轻滑轮与轻绳之间的摩擦,滑轮左侧绳子水平。图甲中绳子张力为F1、物体加速度为a1,图乙中绳子张力为F2、物体加速度为a2,则( )
A.a1<a2,F1<F2
B.a1<a2,F1=F2
C.a1=a2,F1<F2
D.a1=a2,F1=F2
18、霍尔元件被广泛使用在新能源行业中.图中左侧线圈连接待测电压U时,霍尔元件将输出一个电压值。霍尔元件由载流子为正电荷的材料制成,元件中通入的霍尔电流I0从a流向b,放大示意图见下部分。则( )
A.图中霍尔元件处有方向向上的磁场
B.图中霍尔元件前表面c为高电势面
C.增大待测电压U,霍尔电压UH将增大
D.霍尔电压UH的大小与霍尔电流I0无关
19、我国某些农村地区人们仍用手抛撒种子进行水稻播种。某次同时抛出的谷粒中有两颗的运动轨迹如图所示,其轨迹在同一竖直平面内,抛出点均为O、且轨迹交于P点,抛出时谷粒1和谷粒2的初速度分别为和
,其中
方向水平,
方向斜向上。忽略空气阻力,关于两谷粒在空中的运动,下列说法正确的是( )
A.谷粒2在最高点的速度等于
B.谷粒2在最高点的速度小于
C.两谷粒同时到达Р点
D.谁先到Р点取决于谷粒的质量
20、“干簧管”是常见的传感器,如图所示,电流表、电压表为理想电表。闭合开关S,待电路稳定。移去磁体,与移去前相比较,下列说法正确的是 ( )
A.电流表的示数变小,电压表的示数变大
B.电阻的功率变小
C.电源的输出功率一定变大
D.电源的效率变低
21、如图1所示为一列简谐横波沿x轴传播在t=0.4s时的波形图,图2为波传播路径上质点A的振动图象,则这列波沿x轴__________(填“正”或“负”)方向传播,传播速度的大小为_________m/s,质点A的振动方程为_________。
22、_________运动间接反映了物质分子的无规则运动;分子无规则运动的剧烈程度与_________有关。
23、一个电子从电场中A点移动到B点,电场力不做功。从B点移动到C点,电场力做功1.6×10-17J。则A、B、C三点中电势最高的点是_________,电子从C点移动到A点,电场力做功_________J。
24、1mol刚性双原子分子理想气体,当温度为T时,其内能________。
25、一段直导线在垂直于均匀磁场的平面内运动。已知导线绕其一端以角速度转动时的电动势与导线以垂直于导线方向的速度v做平动时的电动势相同,那么,导线的长度为__________________ 。
26、一定质量的理想气体从状态开始经过状态
、
又回到状态
,其
关系图像如图所示,其中
分别与纵轴、横轴平行,
的延长线经过坐标原点
,根据图像中所提供的数据信息,可得气体在从状态
变化到状态
的过程中温度______(填“升高”、“降低”或“不变”)气体在从状态
变化到状态
的过程中对外界______(填“做正功”、“做负功”或“不做功”)。
27、某实验小组做“探究平抛运动的特点”实验。
(1)甲同学用如图所示实验装置进行探究,用小锤打击弹性金属片后,A球沿水平方向抛出,做平抛运动;同时B球由静止释放,做自由落体运动。关于该实验,下列说法正确的有________。
A.A球和B球的质量必须相等
B.需要分别改变两球距地面的高度和击打力度,多次重复实验
C.本实验为验证A球在竖直方向上做自由落体运动
D.本实验为验证A球在水平方向上做匀速直线运动
(2)乙同学用如图甲所示的实验装置研究小球水平方向上的运动。小球从斜槽上滚下,离开斜槽后做平抛运动。在装置中有一个水平放置的可上下调节的挡板,小球飞出后,落到挡板上,分别记录小球落到挡板时球心的位置,并在方格纸上标出相应的点迹。以小球在斜槽末端时的球心位置为坐标原点O,水平向右为x轴,竖直向下为y轴,建立直角坐标系,如图乙所示。
①下列实验条件必须满足的有________
A.斜槽轨道光滑
B.斜槽轨道末端水平
C.每次从斜槽上相同的位置无初速度释放小球
D.移动挡板时,挡板高度等间距变化
②已知小方格边长为l,重力加速度为g。小球平抛的初速度________。小球竖直下落距离y与水平距离x的关系式:
________。
(3)若某同学用图甲所示的实验装置进行实验时,没有调整斜槽末端水平,在斜槽末端向下倾斜的情况下得到小球的运动轨迹如图所示,在轨迹中选取A、B两点,坐标分别为、
。根据平抛运动规律,利用运动的合成与分解的方法,可得斜槽末端切线方向与x轴间夹角的正切值为________。
28、有一款闯关游戏可以简化为如图所示模型。可视为质点的物块A和长L=16m的木板B叠放在左侧粗糙水平地面上,A、B的质量分别为和
,A、B之间以及B、地面之间的动摩擦因数分别为
和
。距B右侧d=8m处有一与B上表面平齐的光滑台面,台面上固定一半径可调的光滑圆弧轨道,圆弧轨道底端两侧稍微错开,分别与左右台面平滑过渡(未画出),N与圆心O等高。现让A从B上合适的位置以合适的初速度
开始向右滑动,游戏环节中A只能经由B的右端滑上台面,沿圆弧轨道做完整的圆周运动,并最终被接收盒“捕获”,游戏便获得成功。已知B与台面相碰反弹运动一小段距离便被锁定静止不动,最大静摩擦力等于滑动摩擦力,重力加速度g取10m/s2。求
(1)A、B刚开始滑动时的加速度大小;
(2)若圆弧轨道半径,A恰好能到达N点,A在PN段运动时克服重力做功的最大瞬时功率;(结果可用分式或根式表示)
(3)若圆弧轨道半径,为确保游戏能成功,A的初速度
的取值范围。
29、如图所示,一辆小车在水平路面上沿直线向右运动,在车厢支架上用轻质细绳悬挂的小球相对小车静止,其悬线与竖直方向成θ=30°角。小球质量m=1kg,g=10m/s2。求:
(1)小车加速度的大小和方向。
(2)悬线拉力的大小。
30、如图所示的xOy平面内,坐标原点O处有一正粒子源,可以向y轴右侧发射出大量同种带电粒子,粒子的质量为m,电荷量为q,所有粒子的初速度大小均为v0,其方向与y轴正方向的夹角分布在0~180°范围内.y轴右侧有一直线PQ,PQ与y轴相距为d,y轴与直线PQ区域内有平行x轴向右范围足够大的匀强电场,电场强度大小E=,在PQ的右侧有矩形区域的匀强磁场,其右侧边界为MN,磁感应强度大小B=
,磁场方向垂直于xOy平面向里.不计粒子间的相互作用,不计粒子重力.
(1)求沿x轴正方向入射的粒子第一次到达PQ的速度及其所用的时间;
(2)若矩形磁场沿y轴方向上足够长,要求所有的粒子均能到达MN,求MN与PQ间的最大距离△x;
(3)欲使沿y轴负方向射入的粒子经电磁场后能回到y轴且距离原点O最远,求矩形磁场区域的最小面积.
31、利用电场或磁场都可以实现对带电粒子的控制。如图所示,正电荷由静止开始,从M板到N板经电场加速后获得速度v0,并以此速度v0沿磁场半径射入匀强磁场,电子穿出磁场时速度方向和原来入射方向的夹角为。已知电子质量为m,带电量为e,MN板间距为d,圆形磁场半径为R。求:
(1)M、N板间的电场强度E;
(2)匀强磁场的磁感应强度B;
(3)电子在磁场中运动的时间t。
32、用如图1所示的电路研究电容器的放电过程,其中电压传感器相当一个理想电压表。实验时将电阻箱R的阻值调至2000Ω,将开关S拨到a端,电源向电容器充电,待电路稳定后,将电压传感器打开,再将开关S拨到b端,电容器通过电阻箱放电。以S拨到b端时为t=0时刻,电压传感器测得的电压U随时间t变化图像如图2所示。忽略导线及开关的电阻,且不考虑电路的辐射问题。求:
(1)通过电阻箱R的最大电流Im是多大?
(2)放电过程通过R的电荷Q为多少库仑?
(3)在图3上定量画出放电过程中电容器两端电压U随电荷量Q变化的关系图像,并据此求出在电容器储存的电能是多少焦耳。
(4)求在充电过程中电源内阻上产生的热量Q热。