1、半导体指纹传感器如图所示。当手指的指纹一面与绝缘表面接触时,指纹上凸点处与凹点处分别与半导体基板上的小极板形成正对面积相同的电容器。现使电容器的电压保持不变,手指挤压绝缘表面过程中,电容器( )
A.电容变小
B.带电量变小
C.处于充电状态
D.内部场强大小不变
2、如图所示,竖直平面内固定着等量同种正点电荷 P、Q,在P、Q连线的中垂线上的A 点由静止释放一个负点电荷,该负点电荷仅在电场力的作用下运动,下列关于该负点电荷在一个运动周期内的速度一时间图像,可能正确的是( )
A.
B.
C.
D.
3、如图所示,在水平向右的匀强磁场中,将一个水平放置的金属棒ab以某一水平速度抛出,金属棒在运动过程中始终保持水平。不计空气阻力,金属棒在运动过程中ab两端的电势分别为、
,则( )
A.,且
保持不变
B.,且
逐渐增大
C.,且
保持不变
D.,且
逐渐增大
4、北斗系统主要由离地面高度约为6R(R为地球半径)的同步轨道卫星和离地面高度约为3R的中轨道卫星组成,已知地球表面重力加速度为g,忽略地球自转。则( )
A.中轨道卫星的向心加速度约为
B.中轨道卫星的运行周期为12小时
C.同步轨道卫星的角速度大于中轨道卫星的角速度
D.因为同步轨道卫星的速度小于中轨道卫星的速度,所以卫星从中轨道变轨到同步轨道,需向前方喷气减速
5、两种放射性元素的半衰期分别为1年和3年,最初这两种元素的原子核总数为M,经过3年后,尚未衰变的原子核总数为,则再经过3年尚未衰变的原子核总数为( )
A.
B.
C.
D.
6、如图所示为一个免打孔伸缩晾衣杆的示意图,使用时,先调节杆的长度使其恰好与两侧的竖直墙面接触,然后打开锁紧装置保持杆长不变,最后旋转增压旋钮增加杆头与墙面间的压力,使其在晾衣物时能保持静止,下列说法正确的是( )
A.杆头与墙面间的压力越大,杆头与墙面间的摩擦力就越大
B.所晾衣物的质量越大,杆头与墙面间的摩擦力就越大
C.在湿衣物晾干的过程中,杆头与墙面间的摩擦力保持不变
D.为了能晾更大质量的衣物,可增加杆头与墙面的接触面积
7、我国计划在 2035年前建成国际月球科研站, 以月球为主要基地,建立集数据中继、导航、遥感于一体的月球互联网。宇航员在月球表面完成下面实验:如图所示,在一固定的、半径为r的竖直光滑圆轨道内部最低点静止一质量为m的小球(可视为质点),给小球一瞬时水平冲量I,恰好能在竖直面内做完整的圆周运动。已知月球的半径为 R,一颗离月球表面距离为的探月卫星绕月球做匀速圆周运动,万有引力常量为 G。根据提供的信息可知( )
A.月球表面的重力加速度大小为
B.月球的第一宇宙速度为
C.探月卫星绕月运行的周期为
D.月球的平均密度为
8、如图所示,电源电动势为E,内阻为r,滑动变阻器接入电路的有效阻值为Rp,已知定值电阻R0为4Ω,R为8Ω,滑动变阻器消耗的功率P与其接入电路的有效阻值Rp的关系如右图所示,下列说法正确的是( )
A.电源的电动势E=4V
B.电源的内阻r=2Ω
C.滑动变阻器的滑片从右向左移动时,R消耗的功率先增大后减小
D.滑动变阻器的滑片从右向左移动时,电源的输出功率一直增大
9、地磁学家曾经尝试用“自激发电”假说解释地球磁场的起源,其原理如图所示:一个金属圆盘A在某一大小恒定、方向时刻沿切线方向的外力作用下,在弱的轴向磁场B中绕金属轴转动,根据法拉第电磁感应定律,盘轴与盘边之间将产生感应电动势,用一根螺旋形导线MN在圆盘下方连接盘边与盘轴,MN中就有感应电流产生,最终回路中的电流达到稳定值,磁场也达到稳定状态。下列说法正确的是( )
A.MN中的电流方向从M→N
B.MN中感应电流的磁场方向与原磁场方向相反
C.圆盘转动的速度逐渐减小
D.磁场达到稳定状态后,MN中不再产生感应电流
10、一列简谐横波沿轴正方向传播,波速为2.0cm/s。某时刻该波刚好传播到
点,波形如图所示。从此时刻开始计时( )
A.时质点
正处于波峰
B.经过1.0s质点刚好完成一次全振动
C.时质点S开始振动,且振动方向向下
D.经过2.0s,质点沿
轴正方向运动4cm
11、如图所示,在半径为R均匀质量分布的某个球形天体中,挖去一半径为的球形空穴,空穴跟球形天体相切。另一均匀小球,其球心位于跟空穴中心连线上的A处,小球球心与球形空穴中心距离为d=2R,万有引力常量为G,已知两个球之间的万有引力大小为F0。现将小球向左移动使得d=
,这时两球间的引力F与F0的比值约等于( )
A.
B.
C.
D.
12、如图所示,两个点电荷所带电荷量分别为和
,固定在直角三角形的AB两点,其中∠ABC=30°。若AC长度为d,则C点电场强度大小为( )
A.
B.
C.
D.
13、一质点从A点做初速度为零、加速度为的匀加速直线运动,经过时间
后到达B点,此时加速度突然反向,大小变为
,又经过2t的时间到达C点。已知AC的距离为AB的距离的2倍,则
与
的大小之比可能为( )
A.
B.
C.
D.
14、2022年2月27日,我国长征八号运载火箭一次发射了22颗卫星,假设其中卫星1、卫星2分别沿圆轨道、椭圆轨道绕地球逆时针运动
,圆的半径与椭圆的半长轴相等,两轨道面在同一平面内且两轨道相交于A、B两点,某时刻两卫星与地球在同一直线上,如图所示。下列说法正确的是( )
A.两卫星在图示位置的速度v1>v2
B.两卫星在图示位置时,卫星1受到的地球引力较大
C.卫星1在A处的加速度比卫星2在A处的加速度大
D.若不及时调整轨道,两卫星可能发生相撞
15、如俯视图所示,水平桌面上放着一根足够长的刚性折线形导轨FOG,一根足够长的金属棒PQ放在导轨上并与导轨接触良好,FOG的角平分线垂直平分金属棒。整个空间中有竖直向上的匀强磁场,磁感应强度大小为B。导轨及金属棒单位长度的电阻均为r。导轨和金属棒的质量均为m。不计一切摩擦。金属棒初始时紧靠O点。给金属棒一个沿着FOG角平分线向右的初速度v0,金属棒最终与O点的距离为d,下列说法正确的是( )
A.金属棒开始运动之后,回路中的电流保持不变
B.PQ两端最终的电势差是初始时的一半
C.B越大,导轨上产生的总焦耳热越大
D.若v0加倍,则d加倍
16、一个小物体在两个大物体的引力作用下在某些位置相对于两个大物体基本保持静止,这些位置被称为拉格朗日点,我们近似认为中继卫星“鹊桥”位于地月拉格朗日L2点与月球同步绕地球做匀速圆周运动,如图所示,下列分析正确的是( )
A.中继星“鹊桥”做圆周运动的向心力仅由地球的引力提供
B.中继星“鹊桥”圆周运动的角速度小于月球运动的角速度
C.中继星“鹊桥”圆周运动的线速度大于月球运动的线速度
D.若“鹊桥”和月球的公转轨道半径之比为n,那么它们的公转周期之比为
17、如图甲所示是一种常见的持球动作,用手臂挤压篮球,将篮球压在身侧。为了方便问题研究,我们将场景进行模型化处理,如图乙所示。若增加手臂对篮球的压力,篮球依旧保持静止,则下列说法正确的是( )
A.篮球受到的合力增大
B.人对篮球的作用力增大
C.人对篮球的作用力的方向竖直向上
D.手臂对篮球的压力是由于篮球发生了形变
18、如图所示,物体运动的图像是抛物线的一部分,物体在
时刻的位置坐标为
,在
时刻的位置坐标为
,则物体在
时刻的速度大小为( )
A.
B.
C.
D.
19、某学习小组利用如图所示的电路研究电压与电流的关系,电流表、电压表均为理想电表,D为二极管,C为电容器,R₁为定值电阻。闭合开关S, 电路稳定后,将滑动变阻器的滑片 P缓慢向左移动一小段距离,这个过程中电压表 V₁的示数变化量大小为ΔU₁,电压表 V₂的示数变化量大小为△U₂,电流表 A 的示数变化量大小为△I。在滑片P向左移动的过程中( )
A.电容器所带电荷量减少
B.变大
C.不变
D.滑动变阻器 R 消耗的功率减小
20、如图所示,用六根符合胡克定律且原长均为的橡皮筋将六个质量为m的小球连接成正六边形,放在光滑水平桌面上。现在使这个系统绕垂直于桌面通过正六边形中心的轴以角速度
匀速转动。在系统稳定后,观察到正六边形边长变为l,则橡皮筋的劲度系数为( )
A.
B.
C.
D.
21、已知铜的摩尓质量为,密度为
,阿伏伽德罗常数
,则每个铜原子质量为______kg,每个铜原子体积为______m3,铜原子的直径为______m。(前两空保留两位有效数字,最后一空保留一位有效数字)
22、万有引力定律中的常量G是由科学家卡文迪什通过_________实验测得的;宇宙飞船返回过程中若质量保持不变,则其所受地球的万有引力将_________。(选填“变大”或“变小”或“不变”)
23、如图,两根电线杆之间架起的电线由于自身重力的作用,中间总是稍有下垂。已知两杆之间电线的总质量为m,端点处的切线与水平方向的夹角为θ,则最低点C处的张力FTC=________。冬天,由于热胀冷缩的原因,θ会变小,试解释工作员人员架设电线不能绷紧的原因:________。
24、在磁场中的同一位置放置一条直导线,导线的方向与磁场方向垂直。先后在导线中通入不同的电流,导线所受的力也不一样。图中的几幅图象表现的是导线受力的大小F与通过导线的电流I的关系。a、b各代表一组F、I的数据。在A、B、C三幅图中,正确的是________,请说明道理_______。
A.B.
C.
25、下图是某同学根据实验画出的平抛小球的运动轨迹,O为平抛起点,在轨迹上任取三点A、B、C,测得A、B两点竖直坐标y1=5.0cm、y2=45.0cm,A、B两点水平间距△x为40.0cm.则平抛小球的初速度v0为 m/s,若C点的竖直坐标y3为60.0cm,则小球在C点的速度vC为 m/s(结果保留两位有效数字,g取10m/s2
26、一容器储有某种理想气体,分子平均自由程为,当气体的热力学温度降为原来的一半,但体积不变,分子作用球半径不变,则此时平均自由程为___________。
27、某同学用如下图所示的实验装置做“验证动量守恒定律”的实验.部分实验步骤如下:
(1)用游标卡尺测得两条遮光片的宽度均为,并将它们固定在两滑块上。
(2)用天平测得滑块A的质量为,滑块B的质量为
。
(3)将两滑块放到气垫导轨上,启动气泵,使气垫导轨正常工作,将气垫导轨调成水平。
(4)在气垫导轨上方固定两个光电门,调整光电门位置,使两滑块沿气垫导轨滑动时,遮光片能通过光电门,但光电门不影响两滑块的滑动。
(5)先使滑块A和滑块B静止在气垫导轨上,如图中所示位置,然后用外力推动滑块A使其获得一速度后沿气垫导轨滑动,通过光电门1后与滑块B碰撞,碰后滑块A反弹再次通过光电门1后用手止住;碰后滑块B向右运动,通过光电门2后用手止住。
(6)计时器记录得滑块A第一次通过光电门1时遮光片的挡光时间为,第二次通过光电门1时遮光片的挡光时间为
;滑块B通过光电门2时遮光片的挡光时间为
。
(7)根据上述相关数据,可得碰撞前滑块A、B组成的系统动量为________
,碰撞后滑块A、B组成的系统动量为
_____________
,碰撞前后的相对误差
__________
。(计算结果均保留2位有效数字)
(8)该同学想通过和
的数值验证此次碰撞是不是弹性碰撞,根据弹性碰撞的相关规律可知,
和
的比值的表达式为
_________(用
和
表示);该次实验中,
和
的比值
____________(计算结果保留2位有效数字)。
28、如图所示,在光滑的水平面上有一长为L的木板B,上表面粗糙,在其左端有一光滑的圆弧槽C,与长木板接触但不相连,圆弧槽的下端与木板上表面相平,B、C静止在水平面上。现有滑块A以初速度
从右端滑上B,一段时间后,以
滑离B,并恰好能到达C的最高点,A、B、C的质量均为m。求:
(1)A刚滑离木板B时,木板B和圆弧槽C的共同速度;
(2)A与B的上表面间的动摩擦因数μ;
(3)圆弧槽C的半径R。
29、如图所示,质量M=1kg且足够长的木板静止在水平面上,与水平面间动摩擦因数μ1=0.1.现有一质量m=2kg的小铁块以v0=3.5m/s的水平速度从左端滑上木板,同时对小铁块施加一水平向右的恒力F=10N。当木板向左运动最远时撤去F,铁块与木板间动摩擦因数μ2=0.2.重力加速度g=10m/s2,求
(1)木板向左运动的时间t1;
(2)木板向左运动的时间内,小铁块和木板的位移大小x1和x2。
30、如图所示,物体和
分别位于倾角
的斜面和绝缘水平面上,用跨过光滑定滑轮
的绝缘轻绳连接,绳
段水平,绳
段平行于斜面,绝缘水平面上方空间有范围足够大、水平向右的匀强电场,已知
、
与接触面间的动摩擦因数均为
,质量均为
,
不带电
带
的正电荷。
、
均恰好能匀速滑动。
与接触面间的最大静摩擦力等于滑动摩擦力,取
,
,
。求匀强电场的电场强度大小的可能值。
31、第24届冬季奥林匹克运动会将于2022年在中国北京和张家口举行。如图所示为简化后的雪道示意图,运动员一定的初速度从半径R=10m的圆弧轨道AB末端水平飞出,落在倾角为的斜坡上,已知运动员到B点时对轨道的压力是其重力的5倍,重力加速度g取10m/s2,不计空气阻力。求:
(1)运动员在B点的速度vB;
(2)运动员离开B点到落在斜面上所用的时间t以及落点到B点的距离L。
32、如图所示,均匀薄壁U型管竖直放置,左管竖直部分高度大于30cm且上端封闭,右管上端 开口且足够长,用两段水银封闭了 A、B两部分理想气体,下方水银左右液面等高,右管上方的水银柱高h=4cm,初状态温度为27℃,A气体长度=15cm,大气压强
.现使整个装置缓慢升温,当下方水银的左右液面高度相差
=10cm时,保持温度不变,再向右管中缓慢注入水银,使A中气柱长度回到15cm.求:
(1)升温后保持不变的温度是多少摄氏度?
(2)右管中再注入的水银高度是多少?