1、某平面区域内一静电场的等势线分布如图中虚线所示,一正电荷仅在电场力作用下由a运动至b,设a、b两点的电场强度分别为Ea、Eb,电势分别为a、
b,该电荷在a、b两点的速度分别为va、vb,电势能分别为Epa、Epb,则( )
A.Ea>Eb
B.a>
b
C.va>vb
D.Epa>Epb
2、如图所示,两个半径不等的均匀带电圆环P、Q带电荷量相等,P环的半径大于Q环的,P带正电,Q带负电。两圆环圆心均在O点,固定在空间直角坐标系中的yOz平面上。a、b在x轴上,到O点的距离相等,c在y轴上,到O点的距离小于Q环的半径。取无限远处电势为零,则( )
A.O点场强不为零
B.a、b两点场强相同
C.电子从c处运动到a处静电力做功与路径无关
D.电子沿x轴从a到b,电场力先做正功后做负功
3、如图是一边长为L的正方形金属框放在光滑水平面上的俯视图,虚线右侧存在竖直向上的匀强磁场.金属矿电阻为R,时刻,金属框在水平拉力F作用下从图示位置由静止开始,以垂直于磁场边界的恒定加速度进入磁场,
时刻线框全部进入磁场。则
时间内金属框中电流i、电量q、运动速度v和拉力F随位移x或时间t变化关系可能正确的是( )
A.
B.
C.
D.
4、如图(a)所示,光滑绝缘水平面上有甲、乙两个带电小球。t=0时,乙球以6m/s的初速度向静止的甲球运动。之后,它们仅在电场力的作用下沿同一直线运动(整个运动过程中没有接触)。它们运动的v-t图象分别如图(b)中甲、乙两曲线所示。由图线可知( )
A.甲、乙两球一定带异号电荷
B.t1时刻两球的电势能最小
C.0~t2时间内,两球间的静电力先增大后减小
D.0~t3时间内,甲球的动能一直增大,乙球的动能一直减小
5、类比是一种常用的研究方法.如图所示,O为椭圆ABCD的左焦点,在O点固定一个正电荷,某一电子P正好沿椭圆ABCD运动,A、C为长轴端点,B、D为短轴端点,这种运动与太阳系内行星的运动规律类似.下列说法中正确的是( )
A.电子在A点的线速度小于在C点的线速度
B.电子在A点的加速度小于在C点的加速度
C.电子由A运动到C的过程中电场力做正功,电势能减小
D.电子由A运动到C的过程中电场力做负功,电势能增加
6、如图所示,光滑水平面上有一足够长的轻质绸布C,C上静止地放有质量分别为2m、m的物块A和B,A、B与绸布间的动摩擦因数均为μ。已知A、B与C间的最大静摩擦力等于滑动摩擦力。现对A施一水平拉力F,F从0开始逐渐增大,下列说法正确的是( )
A.当F=0.5μmg时,A、B、C均保持静止不动
B.当F=2.5μmg时,A、C不会发生相对滑动
C.当F=3.5μmg时,B、C以相同加速度运动
D.只要力F足够大,A、C一定会发生相对滑动
7、如图所示,质量为M的物块放置在光滑水平桌面上,右侧连接一固定于天花板与竖直方向成θ=45°的轻绳,左侧通过一与竖直方向成θ=45°跨过光滑定滑轮的轻绳与一竖直轻弹簧相连。现将质量为m的钩码挂于弹簧下端,当弹簧处于原长时,将钩码由静止释放,当钩码下降到最低点时(未着地),物块对水平桌面的压力恰好为零。轻绳不可伸长,弹簧劲度系数为k且始终在弹性限度内,物块始终处于静止状态,重力加速度为g。以下判断正确的是( )
A.钩码向下一直做加速运动
B.钩码向下运动的最大距离为
C.M=m
D.M=m
8、有一颗绕地球做匀速圆周运动的卫星,其运行周期T是地球近地卫星周期的倍,卫星轨道平面与地球赤道平面重合,卫星上装有太阳能收集板可以把光能转化为电能,提供卫星工作所必须的能量,已知sin37°=0.6,sin53°=0.8,近似认为太阳光是垂直地轴的平行光,卫星运转一周接收太阳能的时间为t,则
的值为( )
A.
B.
C.
D.
9、如图甲所示,和
为两相干波源,振动方向均垂直于纸面,产生的简谐横波波长均为λ,Р点是两列波相遇区域中的一点,已知Р点到两波源的距离分别为
,
,两列波在Р点干涉相消。若
的振动图象如图乙所示,则
的振动方程可能为( )
A.(cm)
B.(cm)
C.(cm)
D.(cm)
10、图甲所示为家庭电路中的漏电保护器,其原理简图如图乙所示,变压器原线圈由火线和零线并绕而成,副线圈接有控制器,当副线圈ab端有电压时,控制器会控制脱扣开关断开,从而起保护作用。下列哪种情况扣开关会断开( )
A.用电器总功率过大
B.站在地面的人误触火线
C.双孔插座中两个线头相碰
D.站在绝缘凳上的人双手同时误触火线和零线
11、如图甲所示,某同学利用橡皮筋悬挂手机的方法模拟蹦极运动,并利用手机的加速度传感器研究加速度随时间变化的图像,如图乙所示。手机保持静止时,图像显示的加速度值为0,自由下落时,图像显示的加速度值约为-10m/s2,忽略空气阻力,下列说法正确的是( )
A.时,手机已下降了约1.8m
B.时,手机正向上加速运动
C.加速度约为70m/s2时,手机速度为0
D.时间内,橡皮筋的拉力逐渐减小
12、如图所示,竖直平面内半径的圆弧AO与半径
的圆弧BO在最低点C相切。两段光滑的直轨道的一端在O点平滑连接,另一端分别在两圆弧上且等高。一个小球从左侧直轨道的最高点A由静止开始沿直轨道下滑,经过O点后沿右侧直轨道上滑至最高点B,不考虑小球在O点的机械能损失,重力加速度g取10m/s。则在此过程中小球运动的时间为( )
A.1.5 s
B.2.0 s
C.3.0 s
D.3.5 s
13、冰壶甲以速度v0被推出后做匀变速直线运动,滑行一段距离后与冰壶乙碰撞,碰撞后冰壶甲立即停止运动。以下图像中能正确表示冰壶甲运动过程的是图像( )
A.
B.
C.
D.
14、1697年牛顿、伯努利等解出了“最速降线”的轨迹方程。如图所示,小球在竖直平面内从静止开始由P点运动到Q点,沿PMQ光滑轨道时间最短(该轨道曲线为最速降线)。PNQ为倾斜光滑直轨道,小球从P点由静止开始沿两轨道运动到Q点时,速度方向与水平方向间夹角相等。M点为PMQ轨道的最低点,M、N两点在同一竖直线上。则( )
A.小球沿两轨道运动到Q点时的速度大小不同
B.小球在M点受到的弹力小于在N点受到的弹力
C.小球在PM间任意位置加速度都不可能沿水平方向
D.小球从N到Q的时间大于从M到Q的时间
15、如图所示,用一束太阳光去照射横截面为三角形的玻璃砖,在光屏上能观察到一条彩色光带。下列说法正确的是( )
A.玻璃对b光的折射率大
B.c光子比b光子的能量大
C.此现象是因为光在玻璃砖中发生全反射形成的
D.减小a光的入射角度,各种色光会在光屏上依次消失,最先消失的是b光
16、2021年7月,我国将发射全球首颗搭载主动激光雷达二氧化碳探测的大气环境监测卫星。在航天领域中,悬绳卫星是一种新兴技术,它要求两颗卫星在不同轨道上同向运行,且两颗卫星与地心连线始终在一条直线上、如图所示,卫星乙的轨道半径为r,甲、乙两颗卫星的质量均为m,悬绳的长度为r,其重力不计,地球质量为M,引力常量为G,则两颗卫星间悬绳的张力为( )
A.
B.
C.
D.
17、如图所示为一列沿x轴正方向传播的简谐横波在时刻的波形图,其传播速度
,此时质点P的位移为
,则质点P的位移y随时间t变化的关系为( )
A.
B.
C.
D.
18、如图为某燃气灶点火装置的原理图。转换器将直流电压转换为正弦交流电压,并加在一理想变压器的原线圈上,理想变压器的原、副线圈的匝数比为n1:n2=1:1000,电压表为交流电表。当变压器副线圈两端电压的瞬时值大于7070V时,就会在钢针和金属板间引发电火花进而点燃气体。此时,电压表的示数至少为( )
A.5
B.5000
C.10
D.7070
19、2020年3月20日,电影《放射性物质》在伦敦首映,该片的主角—居里夫人是放射性元素钋()的发现者。已知钋(
)发生衰变时,会产生
粒子和原子核
,并放出
射线。下列分析正确的是( )
A.原子核的质子数为82,中子数为206
B.射线具有很强的穿透能力,可用来消除有害静电
C.由粒子所组成的射线具有很强的电离能力
D.地磁场能使射线发生偏转
20、中国科学院紫金山天文台近地天体望远镜发现了一颗近地小行星,这颗近地小行星直径约为40m。已知地球半径约为6400km,若该小行星与地球的第一宇宙速度之比约为,则该行星和地球质量之比的数量级为( )
A.10-15
B.10-16
C.10-17
D.10-18
21、如图所示,在双缝干涉实验中,为双缝,右侧
为光屏.A与
的距离与A与
的距离之差为1.5×l0-6m,
连线的中垂线与光屏的交点为O,点
与A点关于O点对称用波长为600nm的黄色激光照双缝,则A点为__________(“亮条纹”或“暗条纹”),点
与A点之间共有_________条亮条纹。
22、如图甲所示为一列简谐波沿x轴传播在=0时刻的波形,图乙为x=1m处质点的振动图象,则此可以判断,此列波沿x轴___________(填“正:”或“负”)方向传播,波速为_________m/s,从t=0时刻开始,x=2.16m处的质点到平衡位置所需要的最短时间为___________s。
23、一列简谐横波在介质中沿x轴正向传播,波长不小于10cm。O和A是介质中平衡位置分别位于x=0和x=5cm处的两个质点。t=0时开始观测,此时质点O的位移为y=+4cm,质点A处于波峰位置。t=(s)时,质点O第一次回到平衡位置,t=1s时,质点A第一次回到平衡位置。则该简谐波的周期________s,波长________m。
24、一列简谐横波沿轴正方向传播,在
轴上有M、N两质点,如图所示。从某时刻开始计时
,M、N两质点的振动方程分别为
cm、
cm,M、N两质点的振动方向始终___________,M、N两质点偏离平衡位置的最大位移差为___________cm。
25、如图所示,一定质量的理想气体依次经历三个不同过程,分别由图象上三条直线
和
表示,其中
平行于横轴,
的延长线过点
平行于纵轴。由图可知,
过程气体体积______(填“增大”“减小”或“不变”),
过程气体_______热(填“吸”或“放”),
过程_______做功(填“气体对外界”或“外界对气体”)。
26、在磁感强度为的均匀磁场中作一半径为r的半球面S,S边线所在平面的法线方向单位矢量
与
的夹角为 ,则通过半球面S的磁通量(取弯面向外为正)为_______。
27、在“探究小车速度随时间变化的规律”实验中,下列说法中不正确或不必要的是 (填字母);
A.长木板的一端必须垫高,使未挂砝码盘的小车拖着纸带恰能在木板上做匀速运动
B.调节滑轮的高度,使牵引小车的细绳与长木板保持平行
C.选择计数点时,可以不从纸带上第一个点开始
D.小车应靠近打点计时器,先接通电源,后释放小车
28、如图所示,相距m的两光滑平台位于同一水平面内,二者之间用传送带平滑相接。传送带顺时针匀速转动,其速度的大小v可以由驱动系统根据需要设定。左侧平台上有一质量
kg的物块A(可视为质点),物块A与传送带间的动摩擦因数
,右侧平台上有一质量
kg,长
m的木板C静止在平台上,木板正中央放一质量
kg的物块B(可视为质点),已知物块B与木板C之间动摩擦因数
,重力加速度取
。求:
(1)现让物块A以初速度m/s自左侧平台滑上传送带,则物块A到达右侧平台的最大速度和最小速度?
(2)设定传送带速度为m/s,A以初速度
m/s自左侧平台滑上传送带,物块A与木板C发生弹性正碰(碰撞时间极短),碰撞结束时传送带立即换成光滑平台,且物块A与木板C不再相遇,木板C与右侧墙壁发生弹性碰撞前与物块B已经相对静止。试求:
①最终物块B停在距木板C的左端多远处?
②整个过程中,物块B与木板C组成的系统产生的热量Q。
29、依据运动员某次练习时推动冰壶滑行的过程建立如图所示模型:冰壶的质量,当运动员推力F为5N,方向与水平方向夹角为
时,冰壶可在推力作用下沿着水平冰面做匀速直线运动,一段时间后松手将冰壶投出,重力加速度g取10m/s2,
,
,求:
(1)冰壶与地面间的动摩擦因数μ;
(2)若冰壶投出后在冰面上滑行的最远距离是,则冰壶离开手时的速度
为多少?
30、如图所示,在x轴上方存在匀强电场,电场方向与xoy平面平行,且与x轴成45°夹角,匀强电场的电场强度为E=100N/C;在x轴下方存在匀强磁场,方向垂直纸面向外。一比荷为C/kg的正粒子由y轴上的A点静止释放,A点的坐标yA为
。一段时间后进入磁场,在磁场中运动轨迹刚好与y轴负半轴相切于P点(未画出),不计粒子的重力。求:(结果保留一位有效数字)
(1)磁感应强度B的大小;
(2)粒子从第一次进入磁场到第二次进入磁场的时间t。
31、如图,一有界区域内,存在着磁感应强度大小均为,方向分别垂直于光滑水平桌面向下的匀强磁场,磁场宽度为
。边长也为
的正方形单匝金属线框P、Q的质量均为
、电阻均为
。它们置于光滑桌面上,其左、右边与磁场边界平行,开始时P、Q靠在一起但彼此绝缘且不粘连。使它们一起以大小为
的初速度向右运动并进入磁场,线框所用金属丝的宽度可忽略不计。
(1)用水平推力作用在线框Q上,使P、Q一起以速度匀速穿过磁场区,求整个过程中水平推力的最大值;
(2)不加外力,让线框P、Q在磁场中自由滑行,结果线框Q恰好能穿过磁场区。求线框P、Q在整个过程中产生的焦耳热与
之比。
32、如图所示,两相同小木块M、N(均视为质点)的质量均为m=1kg,放在水平桌面上,木块M、N间夹有一压缩的轻质弹簧P,弹簧两端与小木块M、N不拴接,但两木块通过长L=0.1m的细线相连接。桌子中央O左侧粗糙,中央O右侧光滑,小木块M、N与桌子左侧间的动摩擦因数μ=0.5,且开始时木块N离桌子中央O的距离s=1.15m。现让小木块M、N一起以v0=4m/s的初速度向桌子右侧运动,当木块M、N越过桌子中央O进入右侧光滑区后,剪断从N间的细线,发现小木块M最终停在桌面光滑区,而小木块N水平抛出离开桌面,木块N运动到A点时速度方向恰好沿AB方向,小木块N沿斜面AB滑下。己知斜面AB与水平方向的夹角为,斜面长为2.0m,木块N与斜面间的动摩擦因数也是μ=0.5.木块N到达B点后通过光滑水平轨道BC到达光滑竖直圆轨道,底端(稍稍错开)分别与两侧的直轨道相切,其中AB与BC轨道以微小圆弧相接。重力加速度g取10m/s2,sin=
0.6,cos
=0.8.
(1)求压缩弹簧的弹性势能Ep;
(2)求水平桌面与A点的高度差;
(3)若木块N恰好不离开轨道,并能从光滑水平轨道DE滑出,则求竖直圆轨道的半径R。