1、下列命题的逆命题是正确的是( )
A.若a=b,则a2=b2
B.若a>0,b>0,则ab>0
C.等边三角形是锐角三角形
D.平行四边形的两组对边相等
2、若在实数范围内有意义,则x的取值范围是( )
A. x≥ B. x≥-
C. x>
D. x≠
3、 是下列哪个一元二次方程的根( )
A. B.
C.
D.
4、下列各式中,正确的是( )
A. B.
C.
D.
5、我国的纸伞工艺十分巧妙,如图,伞圈 D 能沿着伞柄滑动,伞不论张开还是缩拢,伞柄 AP 始终平分同一平面内所成的角∠BAC,为了证明这个结论,我们的依据是
A.SAS
B.SSS
C.AAS
D.ASA
6、如图,在矩形ABCD中,E是BC边的中点,将△ABE沿AE所在的直线折叠得到△AFE,延长AF交CD于点G,已知CG=2,DG=1,则BC的长是( )
A. B.
C.
D.
7、在平面直角坐标系中,已知直线
与
轴交于点
,直线
分别与
交于点
,与
轴交于点
.若
,则下列范围中,含有符合条件的
的( )
A. B.
C.
D.
8、若点A(-3,),B(1,
)都在直线
上,则
与
的大小关系是( )
A.<
B.=
C.>
D.无法比较大小
9、如图,将矩形纸片ABCD的四个角向内折起,恰好拼成一个无缝隙、无重叠的四边形EFGH.若AB=4,BC=6,且AH<DH,则
AH的长为( )
A.3-
B.4-
C.-2
D.6-
10、实数a、b在数轴上的位置如图所示,且|a|>|b|,则化简的结果为( )
A.2a+b B.﹣2a+b C.b D.2a﹣b
11、三角形的周长为18cm,面积为48 cm2,这个三角形的三条中位线围成三角形的周长是_______,面积是______.
12、如图,在正方形ABCD中,E是边CD上一点(点E不与点C、D重合),连结BE,取BE的中点M,连结CM.过点C作CG⊥BE交AD于点G,连结EG、MG.若CM=3,则四边形GMCE的面积为____.
13、在直角坐标系中,点在第四象限,则
的取值范围是_______.
14、点P(2,-3)关于x轴对称的点P′的坐标是_________.
15、如图1,分别沿矩形纸片ABCD和正方形EFGH纸片的对角线AC,EG剪开,拼成如图2所示的平行四边形KLMN,若中间空白部分恰好是正方形OPQR,且平行四边形KLMN的面积为50,则正方形EFGH的面积为_____.
16、已知函数y=-x+4的图象经过点(a,2)则a=____.
17、若关于x的分式方程有增根,则常数m的值为____.
18、关于x的分式方程的解是正数,则a的取值范围是______.
19、下列函数:①,②
,③
,④
,其中y随x的增大而减小的函数有__.(填正确的序号)
20、已知菱形ABCD的对角线AC、BD分别为6cm、8cm,则菱形ABCD的周长为_____cm,面积为_____cm2,高为_____cm.
21、在数学课上,老师出了这样一道题:甲、乙两地相距1400km,乘高铁列车从甲地到乙地比乘特快列车少用9h,已知高铁列车的平均行驶速度是特快列车的2.8倍。求高铁列车从甲地到乙地的时间.老师要求同学先用列表方式分析再解答.下面是两个小组分析时所列的表格:
小组甲:设特快列车的平均速度为xkm/h.
小组乙:高铁列车从甲地到乙地的时间为yh
(1)根据题意,填写表格中空缺的量;(2)结合表格,选择一种方法进行解答.
22、“绿水青山就是金山银山”,市民积极参与义务植树活动,小刚同学为了了解自己小区300户家庭在2019年3月义务植树的数量,进行了抽样调查,随机抽取了其中30户家庭,收集的数据如下:(单位:颗)
(1)对以上数据进行整理、描述和分析
①绘制如下的统计图,请补充完整
②这30户家庭2019年3月份义务植树数量得中位数是 ,众数是 .
(2)“互联网全民义务植树”是新时代首次全民义务植树组织形式和尽责方式的一大创新,并推出义务植树网上预约服务,小刚同学所调查的这30户家庭有7户家庭采用的网上预约义务植树这种方式,由此可以估计该小区采用这种形式的家庭有多少户?
23、甲队计划用若干天完成某项工作,从第4天起,乙队加入此项工作,且甲、乙两队的工作效率相同,结果提前两天完成任务.求甲队原计划完成工作的天数.
24、如图,在平面直角坐标系中,过点B(6,0)的直线AB与直线OA相交于点A(4,2),动点M在线段OA和射线AC上运动.
(1)求直线AB的解析式.
(2)求△OAC的面积.
(3)是否存在点M,使△OMC的面积是△OAC的面积的?若存在求出此时点M的坐标;若不存在,说明理由.
25、如图所示,A(1,0)、点B在y轴上,将三角形OAB沿x轴负方向平移,平移后的图形为三角形DEC,且点C的坐标为(﹣3,2).
(1)直接写出点E的坐标 ;
(2)在四边形ABCD中,点P从点B出发,沿“BC→CD”移动.若点P的速度为每秒1个单位长度,运动时间为t秒,回答下列问题:
①当t= 秒时,点P的横坐标与纵坐标互为相反数;
②求点P在运动过程中的坐标,(用含t的式子表示,写出过程);
③当点P运动到CD上时,设∠CBP=x°,∠PAD=y°,∠BPA=z°,试问 x,y,z之间的数量关系能否确定?若能,请用含x,y的式子表示z,写出过程;若不能,说明理由.