1、和直线都平行的直线
的位置关系是( )
A.相交
B.异面
C.平行
D.平行、相交或异面
2、设,则
()
A. B.
C.
D.
3、下列四个命题:①若,则
;②若
,则
或
;③若
与
方向相反,则
与
是相反向量;④若
,则
.其中正确的命题个数是( )
A.0
B.1
C.2
D.3
4、下列命题正确的是( )
A. 有两个面平行,其余各面都是四边形的几何体叫棱柱。
B. 有两个面平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行的几何体叫棱柱。
C. 绕直角三角形的一边旋转所形成的几何体叫圆锥。
D. 用一个面去截棱锥,底面与截面之间的部分组成的几何体叫棱台。
5、函数在
的图形大致是( )
A.
B.
C.
D.
6、边长为的菱形
中,
,点
为
边上的中点,若
,
( )
A.
B.3
C.
D.6
7、的值为( )
A. B.
C.
D.
8、在△ABC中,A=60°,AB=1,AC=2,则△ABC的面积=( )
A. B.
C.
D.
9、已知,
,则
( )
A.
B.
C.
D.
10、若,
,且
,则
与
的夹角是( )
A.
B.
C.
D.
11、已知向量,
,
,则
与
的夹角为( )
A.
B.
C.
D.
12、已知直线,
,若
,则
的值为( )
A. 或
B.
C.
D.
13、函数的单调递减区间为___________.
14、已知方程有实数根
,则复数
__________________.
15、若数列为等差数列且
,
,则
______.
16、计算:________________.
17、已知正数,
满足
,且
,则
的最小值为______.
18、设函数的图象为
,有如下结论:
①图象关于直线
对称;
②的值域为
;
③函数的单调递减区间是
;
④图象向右平移
个单位所得图象表示的函数是偶函数.
其中正确的结论序号是__________.(写出所有正确结论的序号).
19、已知数列的前n项和为
,
,则
____________.
20、已知向量,
,点
的坐标为
,则点
的坐标为______.
21、若关于x的不等式m(x-1)>x2-x的解集为{x|1<x<2},则实数m的值为________.
22、在中,
,D是BC的中点.若
,则
的最大值为____________.
23、若函数满足:对于任意正数
,都有
,且
,则称函数
为“L函数”.
(1)试判断函数与
是否是“L函数”;
(2)若函数为“L函数”,求实数a的取值范围;
(3)若函数为“L函数”,且
,求证:对任意
,都有
.
24、已知的顶点
,AB边上的高所在的直线
的方程为
,角A的平分线所在直线
的方程为
.
(1)求直线AB的方程;
(2)求点A的坐标;
(3)求直线AC的方程.
25、已知等差数列中,
,
.
(1)求前
项和
.
(2)当公差时求
的最值并求此时
的值.