1、如图,在平面直角坐标系中,一次函数经过
,
两点,则不等式
的解是
A. B.
C.
D.
2、已知点A(2,3)在函数y=ax2-x+1的图象上,则a=( )
A. 1 B. -1 C. 2 D. -2
3、如图,将等边ABC向右平移得到
DEF,其中点E与点C重合,连接BD,若AB=2,则线段BD的长为( )
A.2
B.4
C.
D.2
4、如图,A,B两点分别位于一个池塘的两端,小明想用绳子测量A,B间的距离,如图所示的这种方法,是利用了三角形全等中的( )
A.SSS
B.ASA
C.AAS
D.SAS
5、如图,已知正方形的B面积为144,正方形C的面积为169时,那么正方形A的面积为( )
A. 100 B. 121 C. 64 D. 25
6、下列方程一定有实数解的是( )
A. B.
C.
D.
7、如果用配方法解方程,那么原方程应变形为( )
A. B.
C.
D.
8、已知四边形ABCD,有下列四组条件:①AB∥CD,AD∥BC;②AB=CD,AD=BC:③AB∥CD,AB=CD;④AB∥CD,AD=BC.其中不能判定四边形ABCD为平行四边形的一组条件是( )
A.① B.② C.③ D.④
9、制鞋厂准备生产一批男皮鞋,经抽样120名中年男子,得知所需鞋号和人数如下:
鞋号/cm | 20 | 22 | 23 | 24 | 25 | 26 | 27 |
人数 | 8 | 15 | 20 | 25 | 30 | 20 | 2 |
并求出鞋号的中位数是24,众数是25,平均数是24,下列说法正确的是( )
A. 所需27cm鞋的人数太少,27cm鞋可以不生产
B. 因为平均数24,所以这批男鞋可以一律按24cm的鞋生产
C. 因为中位数是24,故24cm的鞋的生产量应占首位
D. 因为众数是25,故25cm的鞋的生产量要占首位
10、如图所示,下列条件中,能判断AB∥CD的是( )
A. ∠BAD=∠BCD B. ∠1=∠2 C. ∠3=∠4 D. ∠BAC=∠ACD
11、如果反比例函数y的图象在第一、三象限,那么m的取值范围是____.
12、一个不透明的口袋中装有2个白色球,2个红色球,4个黄色球,搅匀后随机从袋中摸出1个球是红色球的概率是____.
13、二次根式有意义的条件是______
14、用反证法证明“树在道边而多子,此必苦李”时,第一步应假设__________.
15、如图,依次连接第一个矩形各边的中点得到一个菱形,再依次连接菱形各边的中点得到第二个矩形,按照此方法继续下去.已知第一个矩形的面积为4,则第n个矩形的面积为_____.
16、在矩形ABCD中,点A关于∠B的平分线的对称点为E,点E关于∠C的平分线的对称点为F.若AD=AB=2
,则AF2=_____.
17、如图,在四边形ABCD中,AB∥CD,要使得四边形ABCD是平行四边形,应添加的条件是 .(只填写一个条件,不另外添加字母和线段)
18、写出一个以3和-4为根的一元二次方程:_______________.
19、如图,已知,
,
,则全等三角形共有_________对.
20、一个长方形的周长为,长为
,宽为
,长方形的宽表示为长的函数是___.
21、在边长为1的小正方形组成的正方形网格中,建立如图所示的平面直角坐标系,已知△ABC的三个顶点都在格点上。
(1)请作出△ABC关于x轴对称的△A′B′C′,并分别写出点A′,B′,C′的坐标。
(2)在格点上是否存在一点D,使A,B,C,D四点为顶点的四边形是平行四边形,若存在,直接写出D点的坐标(只需写出一点即可)。
22、分解因式:2x2﹣8y2.
23、甲、乙两地相距,一辆汽车以
的速度从甲地到乙地,设行驶的时间为
,汽车距乙地的路程为
.
写出
关于
的函数解析式及自变量
的取值范围;
画出
中函数的图象.
24、 如图,在平面直角坐标系中,点A和点B分别在x轴和y轴的正半轴上,OA=3,OB=2OA,C为直线y=2x与直线AB的交点,点D在线段OC上,OD=.
(1)求点C的坐标;
(2)若P为线段AD上一动点(不与A、D重合).P的横坐标为x,△POD的面积为S,请求出S与x的函数关系式;
(3)若F为直线AB上一动点,E为x轴上一点,是否存在以O、D、E、F为顶点的四边形是平行四边形?若存在,写出点F的坐标;若不存在,请说明理由.
25、在平面直角坐标系xOy中,对于点P(x,y),如果点Q(x,y′)的纵坐标满足y′=,那么称点Q为点P的“关联点”.
(1)请直接写出点(3,5)的“关联点”的坐标 ;
(2)如果点P在函数y=x﹣2的图象上,其“关联点”Q与点P重合,求点P的坐标;
(3)如果点M(m,n)的“关联点”N在函数y=2x2的图象上,当0≤m≤2时,求线段MN的最大值.