1、如图,一竖直的木杆在离地面4米处折断,木杆顶端落在地面离木杆底端3米处,木杆折断之前的高度为( ).
A.7米
B.8米
C.9米
D.12米
2、某班学生毕业时,都将自己的照片向本班其他同学送一张留念,全班一共送了1260张,如果全班有x名同学,根据题意,列出方程为( )
A.x(x+1)=1260
B.2x(x+1)=1260
C.x(x﹣1)=1260
D.x(x﹣1)=1260×2
3、如图,在菱形ABCD中,AB=BD,点E、F分别是AB、AD上任意的点(不与端点重合),且AE=DF,连接BF与DE相交于点G,连接CG与BD相交于点H.给出如下几个结论:①△AED≌△DFB:②GC平分∠BGD;③S四边形BCDG=CG2;④∠BGE的大小为定值.其中正确的结论个数为( )
A.1
B.2
C.3
D.4
4、如图,等边的边长为12,
是
边上的中线,
是
上的动点,
是
边上一点,若
的最小值为( )
A. B.
C.
D.
5、平面直角坐标系内有一点A(a,b),若ab=0,则点A的位置在( )
A.原点
B.x轴上
C.y轴上
D.坐标轴上
6、计算的结果正确的是( )
A.
B.
C.
D.
7、能判断一个平行四边形是矩形的条件是( )
A.两条对角线互相平分 B.一组邻边相等
C.两条对角线互相垂直 D.两条对角线相等
8、若反比例函数的图像经过点,则该反比例函数图象一定经过点( )
A. B.
C.
D.
9、在Rt△ABC中,∠C=90°,AC=3,BC=4,CD是中线,则CD的长为( )
A.2.5
B.3
C.4
D.5
10、下列四组线段中,可以构成直角三角形的是( )
A.4,5,6
B.2,3,4
C.5,12,13
D.6,7,8
11、如图,菱形ABCD的对角线AC与BD相交于点O,AC=6,BD=8,那么菱形ABCD的面积是____.
12、在一个不透明的袋中装有黑色和红色两种颜色的球共个,每个球触颜色外都相同,每次摇匀后随即摸出一个球,记下颜色后再放回袋中,通过大量重复摸球实验后,发现摸到黑球的频率稳定于
,则可估计这个袋中红球的个数约为__________.
13、八年级两个班一次数学考试的成绩如下:八(1)班人,平均成绩为
分,八(2)班
人,平均成绩为
分,则这两个班的平均成绩为_____________分.
14、小强从镜子中看到的电子表的读数是15:01,则电子表的实际读数是______.
15、如图,在平面直角坐标系中,菱形的边
在
轴上,
与
交于点
(4,2),反比例函数
的图象经过点
.若将菱形
向左平移
个单位,使点
落在该反比例函数图象上,则
的值为_____________.
16、为了解全国初中毕业生的睡眠状况,比较适合的调查方式是____.(填“普查”或“抽样调查”)
17、已知(x1,y1)和(x2,y2)是直线y=-3x上的两点,且x1>x2,则y1与y2的大小关系是__.
18、若一次函数y=2x+b(b为常数)的图象经过点(1,5),则b的值为________.
19、如图,以正方形ABCD的边AB为一边向外作等边△ABE,则∠BED的度数为______.
20、若关于x的一元二次方程x2+(2k+4)x+k2=0没有实数根,则k的取值范围是_____.
21、有一只喜鹊正在一棵高3 m的小树的树梢上觅食,它的巢筑在距离该树24 m且高为14 m的一棵大树上,巢距离大树顶部1m,这时,它听到巢中幼鸟求助的叫声,便立即赶过去.如果它飞行的速度为5m/s,那么它至少需要几秒才能赶回巢中?。
22、如图:正方形OABC置于坐标系中,B的坐标是(-4,4),点D是边OA上一动点,以OD为边在第一象限内作正方形ODEF
(1)CD与AF有怎样的位置关系,猜想并证明;
(2)当OD=______时,直线CD平分线段AF;
(3)在OD=2时,将正方形ODEF绕点O逆时针旋转α°(0°<α°<180°),求当C、D、E共线时D的坐标.
23、数257-512能被120整除吗?请说明理由.
24、(1)计算:;
(2)解方程:.
25、暑假期间,小明和父母一起开车到距家200千米的景点旅游.出发前,汽车油箱内储油45升;当行驶150千米时,发现油箱剩余油量为30升.
(1)已知油箱内余油量y(升)是行驶路程x(千米)的一次函数,求y与x的函数关系式;
(2)当油箱中余油量少于3升时,汽车将自动报警.如果往返途中不加油,他们能否在汽车报警前回到家?请说明理由.