1、要使二次根式有意义,
必须满足( )
A.
B.
C.
D.
2、如图17-Z-1,数轴上点A,B分别对应1,2,过点B作PQ⊥AB.以点B为圆心,AB长为半径画弧,交PQ于点C,以原点O为圆心,OC长为半径画弧,交数轴于点M,则点M对应的数是( )
图17-Z-1
A. B.
C.
D.
3、从A、B两班分别任抽10名学生进行英语口语测试,其测试成绩的方差是SA2=13.2,SB2=26.36,则( )
A.A班10名学生的成绩比B班10名学生的成绩整齐
B.B班10名学生的成绩比A班10名学生的成绩整齐
C.A、B两班10名学生的成绩一样整齐
D.不能比较A、B两班学生成绩的整齐程度
4、为了解我区八年级2000名学生期中数学考试情况,从中抽取了400名学生的数学成绩进行统计,下列说法正确的是( )
A.这种调查方式是普查
B.每名学生的数学成绩是个体
C.2000名学生是总体
D.400名学生是总体的一个样本
5、目前,随着制造技术的不断发展,手机芯片制造即将进入(纳米)制程时代.已知
,则
用科学记数法表示为( )
A. B.
C.
D.
6、小明要从甲地到乙地,两地相距2千米.已知小明步行的平均速度为100米/分,跑步的平均速度为200米/分,若要在不超过15分钟的时间内到达乙地,至少需要跑步多少分钟?设小明需要跑步x分钟,根据题意可列不等式为( )
A.200x+100(15﹣x)≥2000
B.200x+100(15﹣x)≤2000
C.200x+100(15﹣x)≥2
D.100x+200(15﹣x)≥2
7、直线y=kx+b过点(2,2)且与直线y=-3x相交于点(1,a),则两直线与x轴所围成的面积为( )
A. 2 B. 2.4 C. 3 D. 4.8
8、若分式方程有增根,则m等于( )
A. -3 B. -2 C. 3 D. 2
9、将分式中的x,y的值同时扩大为原来的3倍,则分式的值( )
A.变为原来的 B.变为原来的9倍
C.不变 D.变为原来3倍
10、为了解某小区家庭垃圾袋的使用情况,小亮随机调查了该小区10户家庭一周垃圾袋的使用数量,结果如下(单位:个)7,9,11,8,7,14,10,8,9,7,则这组数据的众数和平均数分别是( )
A.8和9
B.7和9
C.9和7
D.7和8.5
11、已知函数y=2x+m-1是正比例函数,则m=___________.
12、某工程队有14名员工,他们的工种及相应每人每月工资如下表所示:
工种 | 人数 | 每人每月工资/元 |
电工 | 5 | 7 000 |
木工 | 4 | 6 000 |
瓦工 | 5 | 5 000 |
现该工程队进行了人员调整:减少木工2名,增加电工、瓦工各1名,与调整前相比,该工程队员工月工资的方差_________(填“变小”“不变”或“变大”).
13、用科学记数法表示0.000021为_____.
14、如图,四边形ABCD的两条对角线AC、BD互相垂直, A1B1C1D1, 是四边形ABCD的中点四边形,如果AC=8, BD=10,那么四边形A1B1C1D1,的面积为_________.
15、关于x的一元二次方程有实数根,则k的取值范围是_______.
16、如图,有一个透明的直圆柱状的玻璃杯,现测得内径为 5cm,高为 12cm,今有一支 14cm 的吸 管任意斜放于杯中,若不考虑吸管的粗细,则吸管露出杯口外的长度最少为_____.
17、如图,在平行四边形ABCD中,AB=4,∠ABC=60°,点E为BC上的一点,点F,G分别为DE,AD的中点,则GF长的最小值为________________。
18、如图,菱形的周长为
,点
是
的中点,点
是对角线
上的一个动点,则
的最小值是___________.
19、已知菱形的边长为13cm,一条对角线长为10cm,那么这个菱形的面积等于_______.
20、工人师傅做铝合金窗框分下面三个步骤进行:
(1)先截出两对符合规格的铝合金窗料(如图①),使AB=CD,EF=GH;
(2)摆放成如图②的四边形,则这时窗框的形状是______形,根据的数学原理是:_______________________;
(3)将直角尺靠紧窗框的一个角(如图③),调整窗框的边框,当直角尺的两条直角边与窗框无缝隙时(如图④),说明窗框合格,这时窗框是_______形,根据的数学原理是:_____________________.
21、计算:
(1)( )2;
(2)(-)2;
(3)(5)2;
(4)(-2)2.
22、已知,如图,四边形ABCD是正方形,E,F分别是AB和AD延长线上的点,且BE=DF.
(1)求证:CE=CF;
(2)求∠CEF的度数.
23、如图,在Rt△ABC中,∠C=90°,△ACD沿AD折叠,使得点C落在斜边AB上的点E处,已知AC=6,BC=8,求线段AD的长度.
24、在平面直角坐标系xOy中,若P,Q为某个矩形不相邻的两个顶点,且该矩形的边均与某条坐标轴垂直,则称该矩形为点P,Q的“相关矩形”.图1为点P,Q的“相关矩形”的示意图.已知点A的坐标为(1,2).
(1)如图2,点B的坐标为(0,b).
①若b=4,则点A,B的“相关矩形”的面积是 ;
②若点A,B的“相关矩形”的面积是5,则b的值为 .
(2)如图3,等边△DEF的边DE在x轴上,顶点F在y轴的正半轴上,点D的坐标为(1,0).点M的坐标为(m,2).若在△DEF的边上存在一点N,使得点M,N的“相关矩形”为正方形,请直接写出m的取值范围.
25、如图,直线l1:y=x-4分别与x轴,y轴交于A,B两点,与直线l2交于点C(-2,m).点D是直线l2与y轴的交点,将点A向上平移3个单位,再向左平移8个单位恰好能与点D重合.
(1)求直线l2的解析式;
(2)已知点E(n,-2)是直线l1上一点,将直线l2沿x轴向右平移.在平移过程中,当直线l2与线段BE有交点时,求平移距离d的取值范围.