1、改革开放以来,人们的支付方式发生了巨大转变,近年来,移动支付已成为主要的支付方式之一,为了解某校学生上个月两种移动支付方式的使用情况,从全校
名学生中随机抽取了
人,发现样本中
两种支付方式都不使用的有
人,样本中仅使用
种支付方式和仅使用
种支付方式的学生的支付金额
(元)的分布情况如下:
支付金额 支付方式 | |||
仅使用 |
|
|
|
仅使用 |
|
|
|
下面有四个推断:
①从样本中使用移动支付的学生中随机抽取一名学生,该生使用A支付方式的概率大于他使用B支付方式的概率;
②根据样本数据估计,全校1000名学生中.同时使用A、B两种支付方式的大约有400人;
③样本中仅使用A种支付方式的同学,上个月的支付金额的中位数一定不超过1000元;
④样本中仅使用B种支付方式的同学,上个月的支付金额的平均数一定不低于1000元.其中合理的是( )
A.①③
B.②④
C.①②③
D.①②③④
2、对于反比例函数,下列说法错误的是( )
A.函数图象位于第一、三象限
B.函数值y随x的增大而减小
C.若A(-1,y1)、B(1,y2)、C(2,y3)是图象上三个点,则y1<y3<y2
D.P为图象上任意一点,过P作PQ⊥y轴于Q,则△OPQ的面积是定值
3、已知的三边长分别为
,9和
,
的一边长为5,当
的另两边长是下列哪一组时,这两个三角形相似
A. 4,5 B. 5,6 C. 6,7 D. 7,8
4、如图,在⊙O中,AB∥OC,若∠AOC=50°,则∠BCO的度数是( ).
A.25° B.27.5° C.30° D.35°
5、下列识别图形不正确的是( )
A. 有一个角是直角的平行四边形是矩形
B. 有三个角是直角的四边形是矩形
C. 对角线相等的四边形是矩形
D. 对角线互相平分且相等的四边形是矩形
6、点E在射线OA上,点F在射线OB 上,AO⊥BO,EM平分∠AEF,FM平分∠BFE,则tan∠EMF的值为( )
A. B.
C.1 D.
7、下列运算正确的是( )
A.(ab)2=ab2 B.a2·a3= a6
C.(- )2=4 D.m5÷m3=m2
8、已知△ABC是正三角形,点D是边AC上一动点(不与A、C重合),以BD为边作正△BDE,边DE与边AB交于点F,则图中一定相似的三角形有( )对
A.6 B.5 C.4 D.3
9、已知点A(5,-2)关于y轴的对称点A′在反比例函数y=(k≠0)的图象上,则实数k的值为( )
A.10
B.﹣10
C.
D.﹣
10、若一组数据2,0,3,4,6,4,则这组数据中位数是( )
A.0 B.2 C.3 D.3.5
11、对于实数m,n,定义运算m⊗n=mn2﹣n.若2⊗a=1⊗(﹣2)则a=___________.
12、如果抛物线y=(3﹣m)x2﹣3有最高点,那么m的取值范围是_____.
13、不等式组的解集是 。
14、将多项式因式分解为:__________
15、如图,PA,PB分别为的切线,切点分别为A、B,
,则
______.
16、如图,在矩形ABCD中,点E、F分别在AB、CD边上,AD=6,AB=8,将△CBE沿CE翻折,使B点的对应点B′刚好落在对角线AC上,将△ADF沿AF翻折,使D点的对应点D′也恰好落在对角线AC上,连接EF,则EF的长为________.
17、如图,在菱形ABCD中,点E是BC边上一动点(不与点C重合)对角线AC与BD相交于点O,连接AE,交BD于点G.
(1)根据给出的△AEC,作出它的外接圆⊙F,并标出圆心F(不写作法和证明,保留作图痕迹);
(2)在(1)的条件下,连接EF.①求证:∠AEF=∠DBC;
②记t=GF2+AG•GE,当AB=6,BD=6时,求t的取值范围.
18、将矩形纸片沿对角线
翻折,使点
的对应点
(落在矩形
所在平面内,
与
相交于点
,接
.
(1)在图1中,
①和
的位置关系为__________________;
②将剪下后展开,得到的图形是_________________;
(2)若图1中的矩形变为平行四边形时(),如图2所示,结论①、②是否成立,若成立,请对结论②加以证明,若不成立,请说明理由
19、“停课不停学,学习不延期”,某市通过教育资源公共服务平台和有线电视为全市中小学开设在线“空中课堂”,为了解学生每天的学习时间情况,在全市随机抽取了部分初中学生进行问卷调查,现将调查结果绘制成如下不完整的统计图表,请根据图表中的信息解答下列问题:
组别 | 学习时间x(h) | 人数(人) |
A | 2.5<x≤3 | 40 |
B | 3<x≤3.5 | 170 |
C | 3.5<x≤4 | 350 |
D | 4<x≤4.5 |
|
E | 4.5<x≤5 | 90 |
F | 5小时以上 | 50 |
(1)这次参与问卷调查的初中学生有 人,中位数落在 组.
(2)补全条形统计图.
(3)若此市有初中学生2.8万人,求每天参与“空中课堂”学习时间3.5到4.5小时(不包括3.5小时)的初中学生有多少人?
20、如图,直线y=k1x+1与双曲线y=相交于P(1,m),Q(-2,-1)两点.
(1)求m的值;
(2)若A1(x1,y1),A2(x2,y2),A3(x3,y3)为双曲线上三点,且x1<x2<0<x3,请直接说明y1,y2,y3的大小关系;
(3)观察图象,请直接写出不等式k1x+1>的解集.
21、根据最新公布的福建高考改革方案,从2021年开始我省高考将实行“3+1+2”模式.“3“指的是语文、数学、外语三科为必考科目,不分文理科,由全国统一命题;“1+2“为高中学业水平选择性考试,其中“1“为在物理、历史2科中选择1科;“2“为在思想政治、地理、化学、生物4科中选择2科.现对该校某班选科情况进行调查,对调查结果进行了分析统计,并制作了两幅不完整的统计图.
请根据以上信息,完成下列问题:
(1)该班共有学生 人;
(2)请将条形统计图补充完整;
(3)该班某同学物理成绩特别优异,已经从物理、历史学科中选定物理,还需从余下思想政治、地理、化学、生物(分别记为A、B、C、D)4门科目中任意选择两门,请用列表或画树状图的方法,求出该同学恰好选中化学、生物两科的概率.
22、先化简,再求值:,其中
为整数且满足不等式组
23、如图,在平面直角坐标系中,已知抛物线的图象与x轴交于点A,B两点,点A坐标为
,点B坐标为
,与y轴交于点C.
(1)求抛物线的函数解析式;
(2)若将直线绕点A顺时针旋转,交抛物线于一点P,交y轴于点D,使
,求直线
函数解析式;
(3)在(2)条件下若将线段平移(点A,C的对应点M,N),若点M落在抛物线上且点N落在直线
上,求点M的坐标.
24、某校开展以“倡导绿色出行,关爱师生健康”为主题的教育活动.为了了解本校师生的出行方式,在本校范围内随机抽查了部分师生,将收集的数据绘制成下列不完整的两种统计图.
请根据统计图提供的信息,解答下列问题:
(1)m= ;
(2)已知随机抽查的教师人数为学生人数的一半,请根据上述信息补全条形统计图,并标明相应数据;
(3)若全校师生共1800人,请你通过计算估计,全校师生乘私家车出行的有多少人?