1、若x=2是关于x的一元一次方程ax-2=b的解,则3b-6a+2的值是( ).
A. -8 B. -4 C. 8 D. 4
2、在阳光的照射下,一个矩形框的影子的形状不可能是( )
A. 线段
B. 平行四边形
C. 等腰梯形
D. 矩形
3、电力公司在农村电网改造升级工程中把某一输电线铁塔建在了一个坡度为1:0.75的山坡
的平台
上(如图),测得
,
米,
米,
米,则铁塔
的高度约为(参考数据:
,
,
)( )
A.32.5米
B.27.5米
C.30.5米
D.58.5米
4、如图,是
的直径,
是
的弦,点
是
的中点,弦
于点
,交
于点
,已知
, 则
的半径为( )
A. B.
C.
D.
5、如图,工人师傅砌门时,常用木条EF固定长方形门框ABCD,使其不变形,这样做的根据是( )
A.两点之间的线段最短 B.长方形的四个角都是直角
C.三角形有稳定性 D.长方形是轴对称图形
6、如图,某容器的底面水平放置,容器上下皆为圆柱形,且大圆柱的底面半径是小圆柱的底面半径的2倍,高度也是小圆柱的2倍,匀速地向此容器内注水,在注满水的过程中,水面的高度h与时间t的函数关系的图象如图所示,则灌满小圆柱时所需时间为( )
A.
B.
C.
D.10
7、如图,AB是半圆O的直径,且AB=12,点C为半圆上的一点.将此半圆沿BC所在的直线折叠,若圆弧BC恰好过圆心O,则图中阴影部分的面积是( )
A. 4π B. 5π C. 6π D. 8π
8、已知y=-x(x+3-a)+1是关于x的二次函数,当x的取值范围在1≤x≤5时,y在x=1时取得最大值,则实数a的取值范围是( )
A. a=9 B. a=5 C. a≤9 D. a≤5
9、某体育用品商店购进一批足球和篮球,已知篮球的单价为足球单价的1.5倍,购买篮球用了1200元,购买足球的用了1000元,且购买篮球的个数比足球少了5个.若设足球的单价为元/个,依据题意可得方程为( )
A.
B.
C.
D.
10、如图,在正方形中,点
是
的中点,点
是
的中点,
与
相交于点
,设
.得到以下结论:
①;②
;③
则上述结论正确的是( )
A.①②
B.①③
C.②③
D.①②③
11、如图,在平面直角坐标系中,点A的坐标是(10,0),点B的坐标为(8,0),点C、D在以OA为直径的半圆M上,且四边形OCDB是平行四边形,OC长为_____.
12、如图,为
的直径,
与
相切于点
,弦
.若
,则
_____.
13、计算:3a-2a=__________.
14、如图,在菱形ABCD中,点E是AD的中点,对角线AC,BD交于点F,若菱形ABCD的周长是24,则EF=______.
15、一个正n边形的面积是240cm2,周长是60cm,则边心距是 ______ .
16、如图,⊙M的半径为2,圆心M(3,4),点P是⊙M上的任意一点,PA⊥PB,且PA、PB与x轴分别交于A、B两点,若点A、点B关于原点O对称,则AB的最小值为_____.
17、已知:如图,AD是△ABC的角平分线,过点B、C分别作AD的垂线,垂足分别为F、E,CF和EB相交于点P,联结AP.
(1)求证:△ABF∽△ACE;
(2)求证:EC∥AP.
18、为弘扬中华文化,鼓励学生多读书,读好书,九年级(4)班班主任精选了《朝花夕拾》《平凡的世界》《长征》《红岩》《文化苦旅》5种书,准备送给学生.
(1)若由上述5种书各3本,小明同学从中任选一本,选中《红岩》的概率是多少?
(2)若小明同学从上述5种书中任选一本,选中《长征》的概率是,则在(1)的基础上, 班主任老师只需要增加几本《长征》书?
19、(1)计算:-tan45°的值是多少?
(2)已知点P(1,2)在反比例函数y= (k≠0)的图象上.当x=-2时,求y的值;
20、如图,抛物线y=ax2﹣2ax+3的图象与x轴分别交于点A,B,与y轴交于点C,已知BO=CO.
(1)求抛物线的解析式;
(2)点E在线段OB上,过点E作x轴的垂线交抛物线于点P,连结PA,若PA⊥CE,垂足为点F,求OE的长.
21、如图,一只狗用皮带系在10×10的正方形狗窝的一角上,皮带长为14,在狗窝外面狗能活动的范围面积是多少?
22、已知函数y=﹣x2+bx+c(其中b,c是常数)
(1)四位同学在研究此函数时,甲发现当x=0时,y=5;乙发现函数的最大值为9;丙发现函数图象的对称轴是直线x=2;丁发现4是方程﹣x2+bx+c=0的一个根.已知这四位同学中只有一位发现的结论是错误的,请直接写出错误的那个人是谁,并求出此函数表达式;
(2)在(1)的条件下,函数y=﹣x2+bx+c的图象顶点为A,与x轴正半轴交点为B,与y轴的交点为C,若将该图象向下平移m(m>0)个单位,使平移后得到的二次函数图象的顶点落在△ABC的内部(不包括△ABC的边界),求m的取值范围;
(3)若c=b2,当﹣2≤x≤0时,函数y=﹣x2+bx+c的最大值为5,求b的值.
23、先化简,再求值:,其中
.
24、假期里,小华和小亮到某影城看电影,影城同时在四个放映室(1、2、3、4室)播放四部不同的电影,他们各自在这四个放映室任选一个,每个放映室被选中的可能性都相同.
(1)小明选择“1室”的概率为 (直接填空)
(2)用树状图或列表的方法求小华和小亮选择去同一间放映室看电影的概率.