1、数学活动课,老师和同学一起去测量校内某处的大树的高度,如图,老师测得大树前斜坡
的坡度i=1:4,一学生站在离斜坡顶端
的水平距离DF为8m处的D点,测得大树顶端A的仰角为
,已知
,BE=1.6m,此学生身高CD=1.6m,则大树高度AB为( )m.
A. 7.4 B. 7.2 C. 7 D. 6.8
2、下列图形中既是轴对称图形又是中心对称图形的是( )
A. B.
C.
D.
3、函数中自变量
的取值范围是( )
A.x≠2 B.x≥2 C.x≤2 D.x>2
4、风寒效应是一种因刮风所引起的使体感温度较实际气温低的现象,科学家提出用风寒温度描述刮风时的体感温度,并通过大量实验找出了风寒温度和风速的关系.下表中列出了当气温为5℃时,风寒温度T(℃)和风速的几组对应值,那么当气温为5℃时,风寒温度T与风速v的函数关系最可能是( )
风速v(单位: | 0 | 10 | 20 | 30 | 40 |
风寒温度T(单位:℃) | 5 | 3 | 1 |
A.正比例函数关系
B.一次函数关系
C.二次函数关系
D.反比例函数关系
5、下列说法正确的是( )
A.“打开电视剧,正在播足球赛”是必然事件
B.甲组数据的方差,乙组数据的方差
,则乙组数据比甲组数据稳定
C.一组数据2,4,5,5,3,6的众数和中位数都是5
D.“掷一枚硬币正面朝上的概率是”表示每抛硬币2次就有1次正面朝上
6、实数a,b在数轴上的对应点的位置如图所示,下列结论中正确的是( )
A.
B.
C.
D.
7、菱形的对角线相交于O,以O为圆心,以点O到菱形一边的距离为半径的⊙O与菱形其它三边的位置关系是( )
A. 相交 B. 相离 C. 相切 D. 无法确定
8、对甲、乙两同学100米短跑进行5次测试,他们的成绩通过计算得;,S2甲=0.025,S2乙=0.026,下列说法正确的是( )
A.甲短跑成绩比乙好 B.乙短跑成绩比甲好
C.甲比乙短跑成绩稳定 D.乙比甲短跑成绩稳定
9、如图所示物体的左视图为( )
A. B.
C.
D.
10、如图,平面直角坐标系中,点A是x轴负半轴上的一个定点,点P是函数上一个动点,
轴于点B,当P点的横坐标逐渐增大时,四边形
的面积将会( )
A.逐渐增大
B.先减后增
C.逐渐减小
D.先增后减
11、如图,在矩形ABCD中,对角线BD的长为1,点P是线段BD上的一点,联结CP,将△BCP沿着直线CP翻折,若点B落在边AD上的点E处,且EP//AB,则AB的长等于________.
12、已知不等式组的解集为x>﹣1,则k的取值范围是 _______.
13、如图,在△ABC中,,
平分
,点
在
上,连结
交
于点
,且
.以下命题:①
;②
;③
;④
;正确的序号为______.
14、如图所示,一动点从半径为2的上的
点出发,沿着射线
方向运动到
上的点
处,再向左沿着与射线
夹角为
的方向运动到
上的点
处;接着又从
点出发,沿着射线
方向运动到
上的点
处,再向左沿着与射线
夹角为
的方向运动到
上的点
处;
间的距离是________;…按此规律运动到点
处,则点
与点
间的距离是________.
15、不透明袋子中装有9个球,其中有2个红球、3个绿球和4个蓝球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是红球的概率是______________.
16、如图,正方形OABC与正方形ODEF是位似图形,O为位似中心,相似比为1∶,则这两个四边形每组对应顶点到位似中心的距离之比是__________.
17、随着手机APP技术的迅猛发展,人们的沟通方式更便捷、多样.某校数学兴趣小组为了解某社区20~60岁居民最喜欢的沟通方式,针对给出的四种APP(A微信、BQQ、C钉钉、D其他)的使用情况,对社区内该年龄段的部分居民展开了随机问卷调查(每人必选且只能选择其中一项).根据调查结果绘制了如图不完整的统计图,请你根据图中信息解答下列问题:
(1)参与问卷调查的总人数是______;
(2)补全条形统计图;
(3)若小强和他爸爸要在各自的手机里安装A,B,C三种APP中的一种,求他俩选择同一种APP的概率,并列出所有等可能的结果.
18、如图,A、B是⊙O上的两个定点,P是⊙O上的动点(P不与A、B重合)、我们称∠APB是⊙O上关于点A、B的滑动角.
(1)已知∠APB是⊙O上关于点A、B的滑动角,
①若AB是⊙O的直径,则∠APB= °;
②若⊙O的半径是1,AB=,求∠APB的度数;
(2)已知O2是⊙O1外一点,以O2为圆心作一个圆与⊙O1相交于A、B两点,∠APB是⊙O1上关于点A、B的滑动角,直线PA、PB分别交⊙O2于M、N(点M与点A、点N与点B均不重合),连接AN,试探索∠APB与∠MAN、∠ANB之间的数量关系.
19、如图,直线y=ax+2与x轴、y轴分别相交于A,B两点,与双曲线y=(x>0)相交于点P,PC⊥x轴于点C,且PC=4,点A的坐标为(﹣4,0).
(1)求双曲线的解析式;
(2)若点Q为双曲线上点P右侧的一点,过点Q作QH⊥x轴于点H,当以点Q,C,H为顶点的三角形与△AOB相似时,求点Q的坐标.
20、如图,抛物线C1与抛物线C2与x轴有相同的交点M,N(点M在点N的左侧),与x轴的交点分别为A,B,且点A的坐标为(0,﹣3),抛物线C2的解析式为y=mx2+4mx﹣12m(m>0).
(1)求M,N两点的坐标;
(2)在第三象限内的抛物线C1上是否存在一点P,使得△PAM的面积最大,若存在,求出△PAM的面积的最大值;若不存在,说明理由;
(3)设抛物线C2的顶点为点D,顺次连接A,D,B,N,若四边形ADBN是平行四边形,求m的值.
21、如图,四边形ABCD为菱形,已知A(0,4),B(-3,0)
(1)求点D的坐标;
(2)求经过点C的反比例函数解析式
22、在二次函数的学习中,教材有如下内容:
例1 函数图象求一元二次方程的近似解(精确到0.1).
解:设有二次函数,列表并作出它的图象(图1).
… | 0 | 1 | 2 | 3 | 4 | 5 | … | ||
… | … |
观察抛物线和轴交点的位置,估计出交点的横坐标分别约为
和4.8,所以得出方程精确到0.1的近似解为
,
,利用二次函数
的图象求出一元二次方程
的解的方法称为图象法,这种方法常用来求方程的近似解.
小聪和小明通过例题的学习,体会到利用函数图象可以求出方程的近似解.于是他们尝试利用图象法探宄方程的近似解,做法如下:
小聪的做法:令函数,列表并画出函数的图象,借助图象得到方程
的近似解.
小明的做法:因为,所以先将方程
的两边同时除以
,变形得到方程
,再令函数
和
,列表并画出这两个函数的图象,借助图象得到方程
的近似解.
请你选择小聪或小明的做法,求出方程的近似解(精确到0.1).
23、如图,在等边中,点
,
分别在边
,
上,
,且
,
与
交于点
.
(1)求的度数.
(2)在线段上截取
,连接
交
于点
,根据题意,补全图形,用等式表示线段
于
之间的数量关系,并证明.
24、如图是由边长为1的小正方形构成的网格(下面所画三角形顶点都在小正方形顶点上)
(1)在图1中画出以为腰的等腰三角形
,使
,
,并且直接写出
的长;
(2)在图2中画出一个以为斜边的直角三角形
,使
;