1、(2016·兰州中考)点P1(-1,y1),P2(3,y2),P3(5,y3)均在二次函数y=-x2+2x+c的图象上,则y1,y2,y3的大小关系是( )
A. y3>y2>y1 B. y3>y1=y2 C. y1>y2>y3 D. y1=y2>y3
2、若,则
的值是( )
A.3 B.±3 C. D.±
3、下列图形:任取一个是中心对称图形的概率是 ( )
A.
B.
C.
D.1
4、下列计算正确的是( )
A.
B.
C.=4
D.
5、“七巧板”是古代中国劳动人民的发明,被誉为“东方魔板”.图①是由该图形组成的正方形,图②是用该七巧板拼成的“和平鸽”图形,现将一个飞镖随机投掷到该图形上,则飞镖落在和平鸽头部(阴影部分)的概率是( )
A.
B.
C.
D.
6、如图将绕点
按顺时针方向旋转
,
点落在
位置,点
落在
位置;若
,则
的度数是( )
A. B.
C.
D.
7、如图,P是半径为5的⊙O内一点,且OP=3,在过点P的所有⊙O的弦中,弦长为整数的弦的条数为( ).
A.2 B.3 C.4 D.5
8、如图是由个小正方体搭成的物体,该所示物体的主视图是( )
A.
B.
C.
D.
9、已知中,点
为斜边
的中点,连接
,将
沿直线
翻折,使点
落在点
的位置,连接
、
、
,
交
于点
, 若
,
,则
的值为( ).
A.
B.
C.
D.
10、《九章算术》是中国古代的数学专著,是“算经十书”(汉唐之间出现的十部古算书)中最重要的一种.书中有下列问题:“今有邑方不知大小,各中开门,出北门八十步有木,出西门二百四十五步见木,问邑方有几何?”意思是:如图,点、点
分别是正方形
的边
、
的中点,
,
,
过点
,
步,
步,则正方形的边长为( )
A.步
B.步
C.步
D.步
11、若关于x的一元二次方程x2﹣4x+k=0有两个不相等的实数根,则k的值可以是______(写出一个即可)
12、在如图所示的单位正方形网格中,△ABC经过平移后得到△A1B1C1,已知在AC上一点P(2.4,2)平移后的对应点为P1,点P1绕点O逆时针旋转180°,得到对应点P2,则P2点的坐标为_____.
13、已知圆锥的母线长OA=8,底面圆的半径r=2,若一只小虫从点A出发,绕圆锥的侧面爬行一周后又回到A点,则小虫爬行的最短路线的长是 (结果保留根号).
14、如图,在扇形OEF中,∠EOF=90°,半径为2,正方形ABCD的顶点C是的中点,点D在OF上,点A在OF的延长线上,则图中阴影部分的面积为_____.
15、某同学5次数学小测验的成绩分别为95分,85分,95分,90分,85分,则该同学这5次成绩的平均数是________分.
16、如图,中,
是直角,
,
.将
以点B为中心顺时针旋转,使点C旋转到AB边延长线上的点D处,则AC边扫过的图形的面积是________cm2.
17、在“绿满鄂南”行动中,某社区计划对面积为1800m2的区域进行绿化.经投标,由甲、乙两个工程队来完成,已知甲队每天能完成绿化的面积是乙队每天能完成绿化面积的2倍,并且在独立完成面积为400m2区域的绿化时,甲队比乙队少用4天.
(1)求甲、乙两工程队每天能完成绿化的面积.
(2)设甲工程队施工x天,乙工程队施工y天,刚好完成绿化任务,求y与x的函数解析式.
(3)若甲队每天绿化费用是0.6万元,乙队每天绿化费用为0.25万元,且甲乙两队施工的总天数不超过26天,则如何安排甲乙两队施工的天数,使施工总费用最低?并求出最低费用.
18、如图,四边形ABCD各顶点的坐标分别为A(2,4),B(1,1),C(3,2),D(3,3),在第一象限内,画出以原点为位似中心,相似比为2的位似图形 ,并写出各点坐标.
19、已知二次函数y=ax2+bx+c的图象经过A(n,b),B(m,a)且m﹣n=1.
(1)当b=a时,直接写出函数图象的对称轴;
(2)求b和c(用只含字母a、n的代数式表示);
(3)当a<0时,函数有最大值﹣1,b+c≥a,n≤,求a的取值范围.
20、用小立方体搭一个几何体,使它的主视图和俯视图如图所示,俯视图中小正方形中字母表示在该位置小立方体的个数,请解答下列问题:
(1)a= ,b= ,c= ;
(2)这个几何体最少由 个小立方体搭成,最多由 个小立方体搭成;
(3)当d=2,e=1,f=2时,画出这个几何体的左视图.
21、如图,已知AB=AC,CD为⊙O的直径,AD与⊙O相切于点D.
(1)求证:∠BAC=2∠ABD;(2)若 ,求tan∠ABD.
22、定义:按螺旋式分别延长n边形的n条边至一点,若顺次连接这些点所得的图形与原多边形相似,则称它为原图形的螺旋相似图形.例如:如图1,分别延长多边形A1A2…An的边得A1′,A2′,…,An′,若多边形A1′A2′…An′与多边形A1A2…An相似,则多边形A1′A2′…An′就是A1A2…An的螺旋相似图形.
(1)如图2,已知△ABC是等边三角形,作出△ABC的一个螺旋相似图形,简述作法,并给以证明.
(2)如图3,已知矩形ABCD,请探索矩形ABCD是否存在螺旋相似图形,若存在,求出此时AB与BC的比值;若不存在,说明理由.
(3)如图4,△ABC是等腰直角三角形,AC=BC=2,分别延长CA,AB,BC至A′,B′,C′,使△A′B′C′是△ABC的螺旋相似三角形.若AA′=kAC,请直接写出BB′,CC′的长(用含k的代数式表示)
23、如图,在边长为1的小正方形组成的网格中,△ABC和△DEF的顶点都在格点上,P1,P2,P3,P4,P5是△DEF边上的5个格点,请按要求完成下列各题:
(1)试证明三角形△ABC为直角三角形;
(2)判断△ABC和△DEF是否相似,并说明理由;
(3)画一个三角形,使它的三个顶点为P1,P2,P3,P4,P5中的3个格点并且与△ABC相似(要求:用尺规作图,保留痕迹,不写作法与证明).
24、阅读理解,并回答问题:
若x1,x2是方程ax2+bx+c=0的两个实数根,则有ax2+bx+c=a(x﹣x1)(x﹣x2).即ax2+bx+c=ax2﹣a(x1+x2)x+ax1x2,于是b=﹣a(x1+x2),c=ax1x2.由此可得一元二次方程的根与系数关系:x1+x2=﹣,x1x2=
.这就是我们众所周知的韦达定理.
(1)已知m,n是方程x2﹣x﹣100=0的两个实数根,不解方程求m2+n2的值;
(2)若x1,x2,x3,是关于x的方程x(x﹣2)2=t的三个实数根,且x1<x2<x3;
①x1x2+x2x3+x3x1的值;②求x3﹣x1的最大值.