微信扫一扫
随时随地学习
当前位置 :

广元2025学年度第一学期期末教学质量检测高二数学

考试时间: 90分钟 满分: 150
题号
评分
*注意事项:
1、填写答题卡的内容用2B铅笔填写
2、提前 xx 分钟收取答题卡
第Ⅰ卷 客观题
第Ⅰ卷的注释
一、选择题 (共15题,共 75分)
  • 1、是等差数列的前项和,若,则( )

    A.   B.   C. 2   D.

     

  • 2、若函数处的导数为2,则       

    A.2

    B.4

    C.-2

    D.-4

  • 3、等差数列的前项和,已知,则的值是(       ).

    A.

    B.

    C.

    D.

  • 4、下列说法中正确的是(  )

    A.若,则的长度相等,方向相同或相反

    B.若向量是向量的相反向量,则

    C.空间向量的减法满足结合律

    D.在四边形中,一定有

  • 5、已知偶函数f(x)在[0,2]上是减函数,若,则之间的大小关系式( )

    A.   B.   C.   D.

  • 6、命题“”的否定是

    A.

    B.

    C.

    D.

  • 7、 ( )

    A. -1   B. 1   C. 2   D. -2

     

  • 8、数学家欧拉在1765年提出定理:三角形的外心、重心、垂心依次位于同一直线上,且重心到外心的距离是重心到垂心距离的一半,这条直线被后人称之为三角形的欧拉线.已知的顶点,则的欧拉线方程为( )

    A.

    B.

    C.

    D.

  • 9、已知向量的夹角为,若,则的夹角的余弦值为(       

    A.

    B.

    C.

    D.

  • 10、设函数 ,若 的整数有且仅有两个,则 的取值范围是(       

    A.

    B.

    C.

    D.

  • 11、在等差数列中,若,则的值为(       

    A.90

    B.100

    C.180

    D.200

  • 12、,则实数x的值为(       

    A.2

    B.4

    C.6

    D.2或6

  • 13、若方程表示曲线为焦点在y轴上的椭圆,则实数k的取值范围是(  

    A. B.

    C. D.

  • 14、已知数列满足,设,则数列的前2022项和为(       

    A.

    B.

    C.

    D.

  • 15、已知,则取得最小值时,       

    A.

    B.

    C.3

    D.

二、填空题 (共10题,共 50分)
  • 16、已知点P到点的距离比它到直线的距离大1,则点P满足的方程___

  • 17、已知函数f(x)sin(x),其中x,则f(x)的值域是________.

     

  • 18、已知双曲线的左、右焦点分别为,点,且线段的中点在的渐近线上,当点的右支上运动时,的最小值为6,则双曲线的实轴长为______.

  • 19、若方程组无解,则实数a的值为__________.

  • 20、如图,在棱长为的正方体中,为线段上的动点(不含端点),则下列结论正确的是____

    ①平面平面

    的取值范围是

    ④三棱锥的体积为定值

  • 21、蜥蜴的体温单位:与太阳落山后的时间单位:的关系为,则从,蜥蜴体温的平均变化率为____

  • 22、若直线经过点,则直线的倾斜角为______.

  • 23、的展开式共有12项,则________.

  • 24、双曲线的离心率为,点是双曲线上关于原点对称的两点,点是双曲线上异于点的动点,若直线的斜率都存在且分别为,则的最小值为___________.

  • 25、已知正实数满足,则的最小值为_____.

三、解答题 (共5题,共 25分)
  • 26、已知抛物线的准线l经过椭圆的左焦点,且l与椭圆交于AB两点,过椭圆N右焦点的直线交抛物线MCD两点,交椭圆于GH两点,且面积为3.

    1)求椭圆N的方程;

    2)当时,求.

  • 27、已知函数,当时,函数取得极值.

    (1)求实数的值;

    (2)方程有3个不同的根,求实数的取值范围.

  • 28、已知抛物线的焦点到准线的距离为,过抛物线的顶点作两条互相垂直的射线交抛物线于两点(两点与点不重合),作于点.

    (1)记动点的轨迹为曲线,求曲线的方程;

    (2)已知直线,过点作与夹角为的直线,交于点,求的取值范围.

  • 29、(1)已知为锐角,求的值;

    (2)已知为钝角,求的值.

  • 30、如图,正三棱柱(底面为正三角形,侧棱和底面垂直)的所有棱长都为2,的中点,O中点.

    (1)求证:平面.

    (2)求平面与平面所成锐二面角的余弦值.

查看答案
下载试卷
得分 150
题数 30

类型 期末考试
第Ⅰ卷 客观题
一、选择题
二、填空题
三、解答题
PC端 | 移动端 | mip端
字典网(zidianwang.com)汇总了汉语字典,新华字典,成语字典,组词,词语,在线查字典,中文字典,英汉字典,在线字典,康熙字典等等,是学生查询学习资料的好帮手,是老师教学的好助手。
声明:本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
电话:  邮箱:
Copyright©2009-2021 字典网 zidianwang.com 版权所有 闽ICP备20008127号-7
lyric 頭條新聞