1、用图示装置及药品制备有关气体,其中能达到实验目的的是( )
选项 | A | B | C | D |
装置及药品 | ||||
实验目的 | 制H2S | 制氨气 | 制NO2 | 制氯气 |
A.A
B.B
C.C
D.D
2、硫单质及其化合物在工农业生产中有着重要的应用。请回答下列问题:
(1)一种煤炭脱硫技术可以把硫元素以CaSO4的形成固定下来,但产生的CO又会与CaSO4发生化学反应,相关的热化学方程式如下:
①CaSO4(s)+CO(g)CaO(s)+SO2(g)+CO2(g)△H = +210.5kJ•mol-1
②1/4CaSO4(s)+CO(g)1/4CaS(s)+CO2(g) △H = - 47.3kJ•mol-1
反应CaO(s)+3CO(g)+SO2(g) CaS(s)+3CO2(g) △H= kJ•mol-1;
平衡常数K的表达式为 。
(2)图1为在密闭容器中H2S气体分解生成H2和S2(g)的平衡转化率与温度、压强的关系。
图1中压强p1、p2、p3的大小顺序为 ,理由是 ;该反应平衡常数的大小关系为K(T1) K(T2) (填“>”、“<”或“=”),理由是 。
(3)在一定条件下,二氧化硫和氧气发生如下反应:2SO2(g)+O2(g) 2SO3(g) △H<0
①600℃时,在一密闭容器中,将二氧化硫和氧气混合,反应过程中SO2、O2、SO3物质的量变化如图2,反应处于平衡状态的时间段是 。
②据图2判断,反应进行至20min时,曲线发生变化的原因是 (用文字表达);10min到15min的曲线变化的原因可能是 (填写编号)。
A.加了催化剂 B.缩小容器体积
C.降低温度 D.增加SO3的物质的量
(4)烟气中的SO2可用某浓度NaOH溶液吸收得到Na2SO3和NaHSO3混合溶液,且所得溶液呈中性,该溶液中c(Na+)= (用含硫微粒浓度的代数式表示)。
3、下表是元素周期表前三周期,针对表中的①~⑧元素,回答下列问题:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| ||
|
|
|
|
|
|
|
|
|
|
|
| ⑤ | ⑥ |
|
| ||
① | ② |
|
|
|
|
|
|
|
| ③ | ④ |
| ⑦ |
| ⑧ | ||
(1)元素④在周期表中的位置是________。
(2)在这些元素原子中,得电子能力最强的是______(填元素符号)。
(3)单质化学性质最不活泼的元素是______(填元素符号),元素②原子结构示意图为______。
(4)元素⑥、⑦形成的氢化物中,沸点高的是______(填化学式)。
(5)元素①的最高价氧化物对应的水化物所含化学键的类型是_______。
(6)元素⑤最简单的氢化物和最高价氧化物对应的水化物相互反应的产物是_______。
(7)写出元素③的单质与稀盐酸反应的离子方程式_______。
4、氢能是发展中的新能源,它的利用包括氢的制备、储存和应用三个环节。回答下列问题:
(1)利用太阳能直接分解水制氢,是最具吸引力的制氢途径,其能量转化形式为___________________。
(2)氢气能源有很多优点,佴是氢气直接燃烧的能量转化率远低于燃料电池,写出碱性氢氧燃料电池的负极反应式:_______________________________________。
(3)在一定条件下,1mol某金属氢化物MHX与ymolH2发生储氢反应生成1 mol新的金属氢化物,写出该反应的化学反应方程式:___________________________________。
(4)化工生产的副产氢也是氢气的来源。电解法制取有广泛用途的Na2FeO4,同时获得氢气:Fe+2H2O+2OH−FeO42−+3H2↑,工作原理如图所示。装置通电后,铁电极附近生成紫红色的FeO42−,镍电极有气泡产生。已知:Na2FeO4只在强碱性条件下稳定,易被H2还原。
①电解一段时间后,c(OH−)降低的区域在_______(填“阴极室”或“阳极室”)。
②电解过程中,须将阴极产生的气体及时排出,其原因是_______。
5、一定条件下,二氧化碳可合成低碳烯烃,缓解温室效应、充分利用碳资源。
(1)已知:①C2H4(g)+2O2(g)=2CO2(g)+2H2(g) ΔH1
②2H2(g)+O2(g)=2H2O(1) ΔH2
③H2O(1)=H2O(g) ΔH3
④2CO2(g)+6H2(g)C2H4(g)+4H2O(g) ΔH4
则ΔH4=___(用ΔH1、ΔH2、ΔH3表示)。
(2)反应④的反应温度、投料比[=x]对CO2平衡转化率的影响如图所示。
①a__3(填“>”、“<”或“=”);M、N两点反应的平衡常数KM__KN(填填“>”、“<”或“=”)
②M点乙烯体积分数为__;(保留2位有效数字)
③300℃,往6L反应容器中加入3molH2、1molCO2,反应10min达到平衡。求0到10min氢气的平均反应速率为__;
(3)中科院兰州化学物理研究所用Fe3(CO)12/ZSM-5催化CO2加氢合成低碳烯烃反应,所得产物含CH4、C3H6、C4H8等副产物,反应过程如图。
催化剂中添加Na、K、Cu助剂后(助剂也起催化作用)可改变反应的选择性,在其他条件相同时,添加不同助剂,经过相同时间后测得CO2转化率和各产物的物质的量分数如下表。
助剂 | CO2转化率 (%) | 各产物在所有产物中的占比(%) | ||
C2H4 | C3H6 | 其他 | ||
Na | 42.5 | 35.9 | 39.6 | 24.5 |
K | 27.2 | 75.6 | 22.8 | 1.6 |
Cu | 9.8 | 80.7 | 12.5 | 6.8 |
①欲提高单位时间内乙烯的产量,在Fe3(CO)12/ZSM-5中添加__助剂效果最好;加入助剂能提高单位时间内乙烯产量的根本原因是__;
②下列说法正确的是__;
a.第ⅰ步所反应为:CO2+H2CO+H2O
b.第ⅰ步反应的活化能低于第ⅱ步
c.催化剂助剂主要在低聚反应、异构化反应环节起作用
d.Fe3(CO)12/ZSM-5使CO2加氢合成低碳烯烃的ΔH减小
e.添加不同助剂后,反应的平衡常数各不相同
(4)2018年,强碱性电催化还原CO2制乙烯研究取得突破进展,原理如图所示。
①b极接的是太阳能电池的__极;
②已知PTFE浸泡了饱和KCl溶液,请写出阴极的电极反应式__。
6、非金属元素在化学中具有重要地位,请回答下列问题:
(1)氧元素的第一电离能比同周期的相邻元素要小,理由________。
(2)元素X与硒(Se)同周期,且该周期中X元素原子核外未成对电子数最多,则X为_____(填元素符号),其基态原子的电子排布式为_______。
(3)臭齅排放的臭气主要成分为3-MBT-甲基2丁烯硫醇,结构简式为()1mol 3-MBT中含有
键数目为_______NA(NA为阿伏伽德罗常数的值)。该物质沸点低于(CH3)2C=CHCH2OH,主要原因是_______。
(4)PCl5是一种白色晶体,熔融时形成一种能导电的液体测得其中含有一种正四面体形阳离子和一种正八面体形阴离子;熔体中P-Cl的键长只有198pm和206pm两种,试用电离方程式解释PCl5熔体能导电的原因_________,正四面体形阳离子中键角大于PCl3的键角原因为__________,该晶体的晶胞如图所示,立方体的晶胞边长为a pm,NA为阿伏伽德罗常数的值,则该晶体的密度为_______g/cm 3
7、磷是生物体中不可缺少的元素之一,它能形成多种化合物。
(1)基态磷原子中,电子占据的最高能层符号为___________;该能层能量最高的电子云在空间有___________个伸展方向,原子轨道呈__________形。
(2)磷元素与同周期相邻两元素相比,第一电离能由大到小的顺序为___________。
(3)单质磷与Cl2反应,可以生成PCl3和PCl5.其中各原子均满足8电子稳定结构的化合物中,P原子的杂化轨道类型为__________,其分子的空间构型为____________。
(4)磷化硼(BP)是一种超硬耐磨涂层材料,如图为其晶胞,硼原子与磷原子最近的距离为acm。用Mg/mol表示磷化硼的摩尔质量,NA表示阿伏加德罗常数的值,则磷化硼晶体的密度为___________。
(5)H3PO4为三元中强酸,与Fe3+形成H3[Fe(PO4)2],此性质常用于掩蔽溶液中的Fe3+。基态Fe3+的核外电子排布式为__________;PO43-作为_________为Fe提供_________。
(6)磷酸盐分为直链多磷酸盐、支链状超磷酸盐和环状聚偏磷酸盐三类。某直链多磷酸钠的阴离子呈如图所示的无限单链状结构,其中磷氧四面体通过共用顶角氧原子相连。则该多磷酸钠的化学式为_______。
8、
(1)W原子的核外电子排布式为_________。
(2)均由X、Y、Z三种元素组成的三种常见物质A、B、C分别属于酸、碱、盐,其化学式依次为_________、__________、_________,推测盐中阴离子的空间构型为__________,其中心原子杂化方式为__________。
(3)Z、W两种元素电负性的大小关系为____;Y、Z两种元素第一电离能的大小关系为____。
(4)CO的结构可表示为CO,元素Y的单质Y2的结构也可表示为Y
Y。右表是两者的键能数据(单位:kJ·mol-1):
①结合数据说明CO比Y2活泼的原因:_____。
②意大利罗马大学Fulvio Cacace等人获得了极具研究意义的Y4分子,其结构如图所示,请结合上表数据分析,下列说法中,正确的是_____。
A.Y4为一种新型化合物 B.Y4与Y2互为同素异形体
C.Y4的沸点比P4(白磷)高 D.1 mol Y4气体转变为Y2将放出954.6kJ热量
9、亚硝酰硫酸(NOSO4H)纯品为棱形结晶,溶于硫酸,遇水易分解,常用于制染料。SO2和浓硝酸在浓硫酸存在时可制备NOSO4H,反应原理为:SO2+HNO3=SO3+HNO2、SO3+HNO2=NOSO4H。
(1)亚硝酰硫酸(NOSO4H)的制备。
①打开分液漏斗I中的旋塞后发现液体不下滴,可能的原因是_______。
②按气流从左到右的顺序,上述仪器的连接顺序为_______ (填仪器接口字母,部分仪器可重复使用)。
③A中反应的方程式为_______。
④B中“冷水”的温度一般控制在20°C,温度不易过高或过低的原因为_______。
(2)亚硝酰硫酸(NOSO4H)纯度的测定。称取1.500g产品放入250 mL的碘量瓶中,并加入100.00 mL浓度为0.1000 mol·L-1的KMnO4标准溶液和10 mL25%的H2SO4,摇匀;用0.5000 mol·L-1 Na2C2O4标准溶液滴定,滴定前读数1.02 mL,到达滴定终点时读数为31.02 mL。
已知:
i.__KMnO4+__NOSO4H+__=__K2SO4+__MnSO4+__HNO3+__H2SO4
ii.2KMnO4+5Na2C2O4+8H2SO4=2MnSO4+10CO2↑+8H2O
①完成反应i的化学方程式:_______KMnO4+_______NOSO4H+_______=_______K2SO4+_______MnSO4+_______HNO3+_______H2SO4
②滴定终点的现象为_______。
③产品的纯度为_______。(保留3位有效数字)
10、乙酰苯胺是生产磺胺类药物的重要中间体。实验室制取乙酰苯胺的一种方法如下:
乙酸、苯胺、乙酰苯胺的部分参数如下表:
| 乙酸 | 苯胺 | 乙酰苯胺 |
状态 | 液体 | 液体 | 固体 |
沸点(g/mL) | 118 | 184 | 304 |
密度(g/mol) | 1.05 | 1.02 | — |
摩尔质量 | 60 | 93 |
|
在水中的溶解度 | 易溶 | 溶解度 | 20℃溶解度0.46g;80℃溶解度3.5g;100℃溶解度18g |
实验过程:
①在50mL蒸馏瓶中加入沸石、乙酸8mL(过量)、苯胺5mL,实验装置如下图所示(加热装置略去),先小火加热10分钟,再控制温度为103℃,加热至反应完成。
②将反应后的混合物倒入装有100mL冷水的烧杯中,快速搅拌,用布氏漏斗抽滤。
③洗涤沉淀、再抽滤得固体,检验乙酰苯胺中的乙酸是否被除尽。
④将沉淀转移到表面皿上,加热蒸发,除去水得产品5.5g。
回答下列问题:
(1)仪器E的名称是_______,冷水从_______端进入(选填a或b),蒸馏瓶中加入沸石的目的是_______。
(2)上图反应装置中缺少温度计,应在橡皮塞中插入温度计,插入的位置选用下面的_______图。
(3)蒸发装置烧杯中加入的液体为_______。
(4)本实验为了提高苯胺的转化率,采取的措施是_______(填字母标号,下同)。
A.分离出水 B.加入过量的乙酸 C.加入沸石 D.用冷凝柱回流
(5)控制温度计温度为103℃的目的是_______。
(6)持续控制温度计温度为103℃,直至_______(填现象)说明反应结束。
(7)抽滤时,多次用冷水润洗沉淀,可以除去乙酰苯胺中的乙酸。检验乙酸是否除尽的方法是____。
(8)计算乙酰苯胺的产率为_______%。
11、在不同温度下失水和分解,随着温度升高分别生成
,现称取
在敞口容器加热一定时间后,得到
固体,测得生成的
的体积为
(已折算为标准标况),求:
(1)固体的成分和物质的量比_______。
(2)标准状态下生成的体积_______。
12、锂离子电池的应用很广,其正极材料可再生利用。某钴酸锂电池的正极材料含有钴酸锂(LiCoO2)、导电剂乙炔黑、铝箔及少量铁,通过如图工艺流程可回收铝、钴、锂。
回答下列问题:
(1)LiCoO2中,Co元素的化合价为_______。
(2)写出“正极碱浸”中发生反应的离子方程式_______。
(3)“酸浸”时Co、Li元素的浸出率随温度的变化如图所示:
“酸浸”的适宜温度_______,写出该步骤中发生的主要氧化还原反应的化学方程式_______。
(4)沉锂过程要对所得滤渣进行洗涤,检验沉淀是否洗净的操作为_______。
(5)充电时,该锂离子电池充电时阴极发生的反应为6C+xLi++xe-=LixC6充放电过程中,发生LiCoO2与Li1-xCoO2之间的转化,写出放电时电池反应方程式_______。上述工艺中,“放电处理”有利于锂在正极的回收,其原因是_________。
(6)某CoC2O4·2H2O样品中可能含有的杂质为Co2(C2O4)3、H2C2O4·2H2O,采用KMnO4滴定法测定该样品的组成,实验步骤如下:
I.取mg样品于锥形瓶中,加入稀H2SO4溶解,水浴加热至75℃。
用cmol·L-1的KMnO4溶液趁热滴定至溶液出现粉红色且30s内不褪色,消耗KMnO4溶液V1mL。
II.向上述溶液中加入适量还原剂将Co3+完全还原为Co2+,加入稀H2SO4酸化后,在75℃继续用cmol·L-1KMnO4溶液滴定至溶液出现粉红色且30s内不褪色,又消耗KMnO4溶液V2mL。
样品中所含H2C2O4·2H2O(M=126g/mol)的质量分数表达式为___;若所用KMnO4溶液实际浓度偏低,则测得样品中Co元素含量____。(填“偏高”、“偏低”、“无影响”)
13、氧化铬绿(Cr2O3)的性质独特,在冶金、颜料等领域有着不可替代的地位。一种利用淀粉水热还原铬酸钠(Na2CrO4)制备氧化铬绿的工艺流程如下:
已知:①向含少量 Na2 CO3的铬酸钠碱性溶液中通入CO 2可制得不同碳化率的铬酸钠碳化母液;
②“还原”反应剧烈放热,可制得 Cr(OH) 3 浆料。
(1)铬酸钠(Na2CrO4)中铬元素的价态是________,该工艺中“还原”反应最初使用的是蔗糖或甲醛,请写出甲醛的电子式:________________,后来改用价格低廉的淀粉。请写出甲醛(HCHO)与铬酸钠(Na2CrO4)溶液反应的离子方程式___________________________ 。
(2)将混合均匀的料液加入反应釜,密闭搅拌,恒温发生“还原”反应,下列有关说法错误的是____________(填标号)。
A.该反应一定无需加热即可进行 B.必要时可使用冷却水进行温度控制
C.铬酸钠可适当过量,使淀粉充分反应 D.应建造废水回收池,回收含铬废水
(3)测得反应完成后在不同恒温温度、不同碳化率下 Cr(Ⅵ)还原率如下图。实际生产过程中 Cr(Ⅵ)还原率可高达 99.5%以上,“还原”阶段采用的最佳反应条件为________________。
(4)滤液中所含溶质为_________________。该水热法制备氧化铬绿工艺的优点有________________ 、___(请写出两条)。
(5)重铬酸钠(Na2Cr2O7·H2O)与硫酸铵热分解法也是一种生产氧化铬绿的方法,生产过程中产生的气体对环境无害,其化学反应方程式为______________________________ 。