1、用图示装置及药品制备有关气体,其中能达到实验目的的是( )
选项 | A | B | C | D |
装置及药品 | ||||
实验目的 | 制H2S | 制氨气 | 制NO2 | 制氯气 |
A.A
B.B
C.C
D.D
2、回答下列问题:
(1)乙醇的挥发性比水的强,原因是_______。
(2)金属氢化物是应用广泛的还原剂。KH的还原性比NaH的强,原因是_______。
3、二氧化碳的捕集、利用是我国能源领域的一个重要战略方向。
(1)科学家提出由CO2制取C的太阳能工艺如上图所示。
①若“重整系统”发生的反应中=6,则FexOy的化学式为________。
②“热分解系统”中每分解1molFexOy,转移电子的物质的量为________。
工业上用CO2和H2反应合成甲醚。已知:
CO2(g)+3H2(g)===CH3OH(g)+H2O(g) ΔH1=-53.7kJ·mol-1
CH3OCH3(g)+H2O(g)===2CH3OH(g) ΔH2=+23.4kJ·mol-1
则2CO2(g)+6H2(g)===CH3OCH3(g)+3H2O(g) ΔH3=________kJ·mol-1。
①一定条件下,上述合成甲醚的反应达到平衡状态后,若改变反应的某一个条件,下列变化能说明平衡一定向正反应方向移动的是________(填字母)。
a.逆反应速率先增大后减小 b.H2的转化率增大
c.反应物的体积百分含量减小 d.容器中的值变小
②在某压强下,合成甲醚的反应在不同温度、不同投料比时,CO2的转化率如下图所示。T1温度下,将6molCO2和12molH2充入2L的密闭容器中,5min后反应达到平衡状态,则0~5min内的平均反应速率v(CH3OCH3)=__________;KA、KB、KC三者之间的大小关系为____________。
(3)常温下,用氨水吸收CO2可得到NH4HCO3溶液,在NH4HCO3溶液中,c(NH)________(填“>”、“<”或“=”)c(HCO
);反应NH
+HCO
+H2O=NH3·H2O+H2CO3的平衡常数K=__________。(已知常温下NH3·H2O的电离平衡常数Kb=2×10-5,H2CO3的电离平衡常数K1=4×10-7,K2=4×10-11)
4、研究K、Ca、Fe、As、T等第四周期元素对生产、生活有重要意义。回答下列问题:
(1)我国中医把雄黄作为解毒剂,用来治疗癣疥、中风等。雄黄的结构如图1.雄黄分子中孤电子对数与成键电子对数之比为___,砷酸常用于制备颜料、砷酸盐、杀虫剂等,则AsO的空间构型是___。
(2)已知KCl、MgO、CaO、TiN的晶体于NaCl的晶体结构相似,且三种离子晶体的晶格能数据如表所示。
离子晶体 | NaCl | KCl | CaO |
晶格能/kJ•mol-1 | 786 | 715 | 3401 |
①Ti3+的电子排布式为___。
②KCl、CaO、TiN三种离子晶体熔点由高到低的顺序为___,原因是___。
(3)Fe的一种晶体结构如图2甲、乙所示,若按甲虚线方向切割乙,得到的截面图中正确的是___。(填字母标号)假设铁原子的半径是rcm,铁的相对原子质量为M,则该晶体的密度为___g/cm3。(列式即可,设阿伏加德罗常数的值为NA)
5、如图1是甲醇燃料电池工作的示意图,其中A、B、D均为石墨电极,C为铜电极。工作一段时间后,断开K,此时A、B两极上产生的气体体积相同。
(1)甲中负极的电极反应式为____________。
(2)乙中B极为_____(填“阴极”或“阳极”),该电极上析出的气体在标准状况下的体积为____。
(3)丙装置溶液中金属阳离子的物质的量与转移电子的物质的量变化关系如图2,则图中③线表示的是_________________(填离子符号)的变化;反应结束后,要使丙装置中金属阳离子恰好完全沉淀,需要___________ mL 2. 0 mol/L NaOH溶液。
6、雾霾天气严重影响人们的生活和健康。其中首要污染物为可吸入颗粒物PM2.5,其主要来源为燃煤、机动车尾气等。因此改善能源结构、机动车限号等措施能有效减少PM2.5、SO2、NOx等污染。
请回答下列问题:
(1)将一定量的某利M2.5样品用蒸馏水溶解制成待测试样(忽略OH-)。常温下测得该训试样的组成及其浓度如下表:根据表中数据判断该试样的pH=___________。
(2)汽车尾气中NOx和CO的生成: ①已知汽缸中生成NO的反应为:N2(g)+O2(g) 2NO(g) △H>0恒温,恒容密闭容器中,下列说法中,能说明该反应达到化学平衡状态的是____。
A.混合气体的密度不再变化
B.混合气体的压强不再变化
C.N2、O2、NO的物质的量之比为1∶1∶2
D.氧气的转化率不再变化
(3)为减少SO2的排放,常采取的措施有:
①将煤转化为清洁气体燃料。
已知:H2(g)+ 1/2O2(g)=H2O(g) △H=-241.8kJ·mol-1
C(s)+1/2O2(g)=CO(g) △H=-110.5kJ·mol-1
写出焦炭与水蒸气反应的热化学方程式:_____________。
②洗涤含SO2的烟气。下列可作为洗涤含SO2的烟气的洗涤剂的是 ___________。
A.浓氨水 B.碳酸氢钠饱和溶液 C.FeCl2饱和溶液 D.酸性CaCl2饱和溶液
(4)汽车使用乙醇汽油并不能减少NOx的排放,这使NOx的有效消除成为环保领域的重要课题。某研究性小组在实验室以Ag-ZSM-5为催化剂,测得NO转化为N2的转化率随温度变化情况如图所示。若不使用CO,温度超过775K,发现NO的分解率降低,其可能的原因为______,在n(NO)/n(CO)=1的条件下,为更好的除去NOx物质,应控制的最佳温度在_____K左右。
(5)车辆排放的氮氧化物、煤燃烧产生的二氧化硫是导致雾霾天气的“罪魁祸首”。活性炭可处理大气污染物NO。在5L密闭容器中加入NO和活性炭(假设无杂质),一定条件下生成气体E和F。当温度分别在T1℃ 和T2℃时,测得各物质平衡时物质的量(n/mol)如下表:
①写出NO与活性炭反应的化学方程式_____,②若T1<T2,则该反应的△H______O (填”>”、“<”或“=”)。
③上述反应T1℃时达到化学平衡后再通入0.1molNO气体,则达到新化学平衡时NO的转化率为__________。
7、有X、Y、Z、M、G五种元素,是分属三个短周期并且原子序数依次增大的主族元素。其中X、Z同主族,可形成离子化合物ZX;Y、M同主族,可形成MY2、MY3两种分子。完成下列填空:
(1)元素Y的原子其核外有_______种运动状态不同的电子存在;
(2)在上述元素所构成的单质或化合物中,可用作自来水消毒剂的有_______、_______(至少写出两种,填写化学式);
(3)已知X2M的燃烧热为 187kJ/mol。(提示:燃烧热的定义:1mol可燃物充分燃烧生成稳定化合物时所放出的热量。)写出X2M燃烧的热化学方程式:_________。
8、将汽车尾气中含有的CO利用不仅能有效利用资源,还能防治空气污染。工业上常用CO与H2在由Al、Zn、Cu等元素形成的催化剂作用下合成甲醇。
(1)右图是某同学画出CO分子中氧原子的核外电子排布图,
请判断该排布图 (填“正确”或“错误”),理由是 (若判断正确,该空不用回答)。
(2)写出两种与CO互为等电子体的离子 。
(3)向CuSO4溶液中加入足量氨水可得到深蓝色[Cu(NH3)4]SO4溶液,[Cu(NH3)4]SO4中 所含配位键是通过配体分子的 给出孤电子对, 接受电子对形成,SO42-的空间构型是 ,该物质中N、O、S三种元素的第一电离能大小顺序为 > > (填元素符号)。
(4)甲醇与乙烷的相对分子质量相近,故二者分子间的作用力(范德华力)相近,但是二者沸点的差距却很大,造成该差异的原因是 ;在甲醇分子中碳原子轨道的杂化类型为 。
(5)甲醛与新制Cu(OH)2悬浊液加热可得砖红色沉淀Cu2O,已知Cu2O晶胞的结构如图所示:
①在该晶胞中,Cu+ 的配位数是 ,
②若该晶胞的边长为a pm,则Cu2O的密度为________g·cm-3(只要求列算式,不必计算出数值,阿伏伽德罗常数为NA)
9、金属锡及其化合物在生产和科研中应用广泛。回答下列问题:
(1)某种含锡的有机金属化合物的结构如图所示。已知烷基配位体以C、N整合形式键合于Sn原子。
①基态Sn原子的价电子轨道表示式为_______,在周期表中的位置为_______,C、Si、Cl电负性由大到小的顺序为_______。
②该化合物中共有_______种杂化方式;提供电子对形成配位键的原子是_______。
(2)一种含锡的多元金属硫化物的晶胞结构为四方晶系,已知金属原子均呈四面体配位,晶胞棱边夹角均为90°,其结构可看作是由两个立方体A、B上下堆叠而成。如图,甲为A的体对角线投影图,乙为B的沿y轴方向的投影图。A中Fe、Sn位置互换即为B。
①该硫化物的化学式为_______,晶胞中Sn的配位数与Cu的配位数之比为_______。
②立方体A、B棱长均为a pm,以晶胞参数为单位长度建立的坐标系可以表示晶胞中各原子的位置,称作原子的分数坐标。晶胞中部分原子的分数坐标为、
,则晶胞中Sn原子的分数坐标为_______;晶胞中Sn原子和Cu原子间的最短距离为_______pm。
10、乳酸亚铁晶体([CH3CH(OH)COO]2Fe·3H2O,Mr=288)是常用的补铁剂易溶于水,吸收效果比无机铁好。乳酸亚铁可由乳酸与FeCO3反应制得。
I.制备碳酸亚铁(FeCO3)
已知FeCO3易被氧化:4FeCO3+6H2O+O2=4Fe(OH)3+4CO2。某兴趣小组设计如下方案制备FeCO3,实验装置如图:
(1)仪器B的名称是__。
(2)利用如图所示装置进行实验,进行以下两步操作:
第一步:打开活塞1、3,关闭活塞2,反应一段时间;
第二步:关闭活塞3,打开活塞2,发现C中有白色沉淀和气体生成。
①第一步骤的目的是__。
②C中反应生成白色沉淀的离子方程式是:__。
③仪器C中的混合物经过滤,洗涤后得到FeCO3沉淀。实验室中进行过滤后沉淀洗涤的操作是:__。
④装置D中可盛装适量的水,该装置作用是__。
II.制备乳酸亚铁晶体和定量测量
(1)制备乳酸亚铁晶体。将制得的FeCO3加入到乳酸溶液中,加入少量铁粉,在70℃下搅拌使反应充分进行,一段时间后,经过分离提纯操作,从所得溶液中得到乳酸亚铁晶体。现需要设计实验检测产品在制备过程是否因氧化而发生变质,可选用的试剂__。
(2)用碘量法测定晶体样品中铁元素的含量并计算样品的纯度。称取3.00g晶体样品,在足量空气中灼烧成灰,加足量稀硫酸溶解,将所有可溶物配成l00mL溶液。取25.00mL该溶液加入过量的KI反应,加入几滴__(试剂名称)作指示剂,用0.l0mol/L的硫代硫酸钠溶液滴定(I2+2S2O32-=S4O62-+2I-),重复实验3次,滴定终点时平均消耗硫代硫酸钠25.00mL,则样品纯度为__。
11、某磁黄铁矿的主要成分是(S为-2价),既含有
又含有
。将一定量的该磁黄铁矿与100mL的盐酸恰好完全反应(注:矿石中其他成分不与盐酸反应),生成2.4g硫单质、0.425mol
和一定量
气体,且溶液中无
。计算:
(1)生成的气体在标准状况下的体积_______;
(2)_______。(写出计算过程)
12、铜阳极泥在回收利用过程中会产生文丘里泥,文丘里泥主要含有TeO2、SeO2、PbSeO3、PbO、金、银等,一种从文丘里泥中获得Se、TeO2的工艺流程如下图。
已知:PbO、Pb(OH)2具有两性。在强碱性溶液中铅的主要存在形态为。回答下列问题:
(1)“碱浸”时提高没出率的措施有_______(写出一条)。
(2)“碱浸”时没出率与NaOH浓度的关系如图所示,为保证Te浸出率达到最高,选择的NaOH浓度为_______g/L。
(3)“浸出液1”中的阴离子除了OH-、外主要还有_______(填离子符号)。
(4)“浸出液1”加入文丘里泥后铅含量大幅降低,同时碲的含量提高。写出相关反应的离子方程式_______。
(5)已知排入城市下水道污水c(Pb2+)不得高于4.83×10-7mol/L,Ksp[Pb(OH)2]=2.5×10-16。测得“浸出液2”pH=9,试判断“浸出液2”的铅[c(Pb2+)]是否达到排放标准_______(填“是”或“否”),请通过计算说明理由_______。
(6)“中和”获得TeO2的过程要控制pH为5.5~6.0,以避免硒的析出。
①用_______(填仪器名称)测此过程的pH。
②此过程获得TeO2的化学方程式为_______。
(7)利用Na2SO3(aq)+Se(s)=Na2SeO3(aq)(△H>0)可以对粗硒进行提纯,若粗硒中的杂质不溶于水也不与Na2SO3反应,设计粗硒提纯的方法_______。
13、工业上,以铁质镍矿(除NiO外,还含有Fe2O3、FeO、SiO2等杂质)和镁质镍矿(除NiO外,还含有MgO、CaO、SiO2等杂质)为原料炼镍的流程如下图:
回答下列问题:
(1)滤渣1主要成分的化学式为___________,“转化”操作中加入H2O2的目的是_______。
(2)中和沉铁步骤中,不仅有Fe(OH)3沉淀,同时还产生Fe(OH)3胶体,导致c(Ni2+)明显降低,原因是_____________________;为减少镍的损失,可在中和的同时加入Na2SO4溶液,生成黄钠铁矾[NaFe3(SO4)2(OH)6]沉淀,反应离子方程式为_____________________。
(3)已知Ksp(CaF2)=1.11×10-10、Ksp(MgF2)=7.40×10-11,在过滤2的滤液中加入过量NaF溶液,反应完全后,c(Ca2+)/c(Mg2+)=____。
(4)我国研制出非贵金属镍钼基高效电催化剂,实现了低能耗电解富尿素废水制取H2(如图所示)。酸性条件下,总反应为CO(NH2)2+H2O3H2↑+N2↑+CO2↑。B电极连接的电源的______极,A电极的电极反应为_______________________。
(5)常压下羰基化法精炼镍的原理为:Ni(s)+4CO(g)Ni(CO)4(g)。230℃时,K=2×10-5。己知:Ni(CO)4的沸点为42.2℃,固体杂质不参与反应。第一阶段:将粗镍转化成气态Ni(CO)4;第二阶段:将第一阶段反应后的气体分离出来,加热至230℃制得高纯镍。则第一阶段在30℃和50℃两者之间选择的反应温度是__________;230℃时,第一阶段的转化率低于第二阶段的转化率,原因是_____________________。