1、用图示装置及药品制备有关气体,其中能达到实验目的的是( )
选项 | A | B | C | D |
装置及药品 | ||||
实验目的 | 制H2S | 制氨气 | 制NO2 | 制氯气 |
A.A
B.B
C.C
D.D
2、在空气中泄露的二氧化硫,会被氧化而形成硫酸雾或硫酸盐气溶胶,污染环境。工业上常用溶液吸收、活性炭还原等方法处理二氧化硫,以减小对空气的污染。
(1)写出用溶液吸收
的离子方程式____________。
(2)钠原子核外有______种能量不同的电子。写出硫原子最外层电子的轨道表示式____________。
(3)比
稳定,请用分子结构的知识简述其理由。__________________
3、二硫化钼(MoS2,难溶于水)具有良好的光、电性能,可由钼精矿(主要含MoS2,还含NiS、CaMoO4等)为原料经过如下过程制得。
(1)“浸取”。向钼精矿中加入NaOH溶液,再加入NaClO溶液,充分反应后的溶液中含有Na2MoO4、Na2SO4、NiSO4、NaCl。
①写出浸取时MoS2发生反应的离子方程式:_______。
②浸取后的滤渣中含CaMoO4。若浸取时向溶液中加入Na2CO3溶液,可提高浸出液中Mo元素的含量,原因是_______。
③浸取时,Mo元素的浸出率与时间的变化如图1所示。已知生成物对反应无影响,则反应3~4min时,Mo元素的浸出率迅速上升的原因是_______。
(2)“制硫代钼酸铵[(NH4)2MoS4,摩尔质量260g•mol-1]”。向浸出液中加入NH4NO3和HNO3,析出(NH4)2Mo4O13,将(NH4)2Mo4O13溶于水,向其中加入(NH4)2S溶液,可得(NH4)2MoS4,写出生成(NH4)2MoS4反应的化学方程式:________。
(3)“制MoS2”。(NH4)2MoS4可通过如下两种方法制取MoS2:
方法一:将(NH4)2MoS4在一定条件下加热,可分解得到MoS2、NH3、H2S和硫单质。其中NH3、H2S和硫单质的物质的量之比为8:4:1。
方法二:将(NH4)2MoS4在空气中加热可得MoS2,加热时所得剩余固体的质量与原始固体质量的比值与温度的关系如图2所示。
①方法一中,所得硫单质的分子式为_______。
②方法二中,500℃可得到Mo的一种氧化物,该氧化物的化学式为_______。
4、由三种常见元素组成的化合物A,按如图流程进行实验。气体B、C、D均无色、无臭,B、D是纯净物;浓硫酸增重3.60g,碱石灰增重17.60g;溶液F焰色反应呈黄色。
请回答:
(1)组成A的非金属元素是___,气体B的结构简式___。
(2)固体A与足量水反应的化学方程式是___。
(3)一定条件下,气体D可能和FeO发生氧化还原反应,试写出一个可能的化学方程___。
5、铜及其化合物在工农业生产及日常生活中应用非常广泛.
(1)纳米级Cu2O由于具有优良的催化性能而受到关注,下表为制取Cu2O的三种方法:
①工业上常用方法Ⅱ和方法Ⅲ制取Cu2O而很少用方法I,其原因是____________。
②已知:
2Cu(s)+1/2O2(g)═Cu2O(s)△H=-169kJ•mol-1,
C(s)+1/2O2(g)═CO(g)△H=-110.5kJ•mol-1,
Cu(s)+1/2O2(g)═2CuO(s)△H=-157kJ•mol-1
则方法I发生的反应:2CuO(s)+C(s)=Cu20(s)+CO(g); △H=____________kJ/mol。
(2)氢化亚铜是一种红色固体,可由下列反应制备:4CuSO4+3H3PO2+6H2O=4CuH↓+4H2SO4+3H3PO4.
该反应每转移3mol电子,生成CuH的物质的量为____________。
(3)氯化铜溶液中铜各物种的分布分数(平衡时某物种的浓度占各物种浓度之和的分数)与c(Cl-) 的关系如图所示。
①当c(Cl-)=9mol•L-1时,溶液中主要的3种含铜物种浓度大小关系为____________。
②在c(Cl-)=1mol•L-1的氯化铜溶液中,滴入AgNO3溶液,含铜物种间转化的离子方程式为____________(任写一个).
(4)已知:Cu(OH)2是二元弱碱;亚磷酸(H3PO3)是二元弱酸,与NaOH溶液反应,生成Na2HPO3.
①在铜盐溶液中Cu2+发生水解反应的平衡常数为____________,(已知:25℃时,Ksp[Cu(OH)2]=2.0×10-20mol3•L-3)
②电解Na2HPO3溶液可得到亚磷酸,装置如图(说明:阳膜只允许阳离子通过,阴膜只允许阴离子通过),则产品室中反应的离子方程式为____________。
6、甲醇(CH3OH)有很多用途。回答下列问题:
I.甲醇可用于制取甲醛(HCHO)。
(1)甲醇的沸点为64 ℃,甲醛的沸点为-21 ℃,甲醇的沸点较高的原因是__________。
(2)甲醇分子中采用sp3杂化的原子有____________(填元素符号);甲醛分子中σ键与π键之比为_____________。
II.直接甲醇燃料电池(DMFC)因其具有质量轻、体积小、结构简单、比能量密度高、低温操作等优点,DMFC阳极普遍采用以铂(Pt)为基础 的二元催化剂,如Pt-Cr合金等。
(3)基态Cr原子的未成对电子数为______________。
(4)与铬同周期的所有元素中基态原子最外层电子数与铬原子相同的元素是_______。(填元素符号)
(5)已知金属铂晶胞结构如右图所示。催化剂的XRD图谱分析认为:当铂中掺入Cr原子后,Cr替代了晶胞面心位置上的Pt,该催化剂的化学式为_______,晶体中与1个Pt原子相紧邻的Cr原子有_____个。
(6)若铂原子半径为r pm,铂摩尔质量为M g·mol-1,铂晶体的密度为ρ g·cm-3,则阿伏加德罗常数NA为_____mol-1(用有关字母列出计算式即可)。
7、硫酸锌可作为食品锌强化剂的原料。工业上常用菱锌矿生产硫酸锌,菱锌矿的主要成分是ZnCO3,并含少量Fe2O3 、FeCO3 、MgO、CaO等,生产工艺流程图如下:
(1)将菱锌矿研磨成粉的目的是___________________。
(2)完成“氧化除铁”步骤中反应的离子方程式:
□Fe(OH)2+ □____+ □_____="=" □Fe(OH)3+ □Cl_
(3)针铁矿(Goethite)是以德国诗人歌德(Goethe)名字命名的,组成元素是Fe、O和H ,化学式式量为89,化学式是_______ 。
(4)根据下表数据,调节“滤液2”的pH时,理论上可选用的最大区间为______ 。
| Mg(OH)2
| Zn(OH)2
| MgCO3
| CaCO3
|
开始沉淀的pH
| 10.4
| 6.4
| —
| —
|
沉淀完全的pH
| 12.4
| 8.0
| —
| —
|
开始溶解的pH
| —
| 10.5
| —
| —
|
Ksp
| 5.6×10-12
| —
| 6.8×10-6
| 2.8×10-9
|
(5)工业上从“滤液3”制取MgO过程中,合适的反应物是_________(选填序号)。
a.大理石粉 b.石灰乳 c.纯碱溶液 d.烧碱溶液
(6)“滤液4”之后的操作依次为 ______ 、_______ 、过滤,洗涤,干燥。
(7)分析图中数据,菱锌矿粉中ZnCO3的质量分数不低于 。
8、在某温度时,将1.0mol・L-1氨水滴入10 mL1.0mol・L-1盐酸中,溶液pH和温度随加入氨水体积变化曲线如图所示:
(1)a、b、c、d对应的溶液中水的电离程度由大到小的是_____。
(2)氨水体积滴至____时(填“V1”或“V2”),氨水与盐酸恰好完全反应,简述判断依据____;此时溶液中离子浓度由大到小的顺序是____。
9、氢能是一种极具发展潜力的清洁能源,硫碘循环制氢主要的热化学方程式为:
Ⅰ.SO2(g)+2H2O(l)+I2(g)=H2SO4 (l)+2HI(g) △H=35.9 kJ/mol
Ⅱ.2H2SO4(l)=2SO2(g)+O2(g)+2H2O(l) △H=470kJ/mol
Ⅲ.2HI(g)=H2(g)+I2(g) △H=14.9kJ/mol
(1)反应2H2(g)+ O2(g)=2H2O(l)的△H= mol·L-1。
(2)反应Ⅰ在液相中发生称为bensun反应,向水中加入1mol SO2和3mol I2,在不同温度下恰好完全反应生成的n(SO42-)和n(Ix-)的变化见图甲。
①Ix-中x= 。②温度达到120℃时,该反应不发生的原因是 。
(3)反应Ⅲ是在图乙中进行,其中的高分子膜只允许产物通过,高分子膜能使反应程度 ___ (填“增大”、“减小”或“不变”),在该装置中为了进一步增大达平衡时HI的分解率;不考虑温度的影响,还可以采取的措施为 。
(4)图丙是一种制备H2的方法,装置中的MEA为允许质子通过的电解质膜。
①写出阳极电极的反应式: 。
②电解产生的氢气可以用镁铝合金(Mg17Al12)来储存,合金吸氢后得到仅含一种金属的氢化物(其中氢的质量分数为0.077)和一种金属单质,该反应的化学方程式为 。
10、某学生设计如图实验装置利用氯气与潮湿的消石灰反应制取少量漂白粉(这是一个放热反应),据此回答下列问题:
(1)A仪器的名称是______,D的作用是______。
(2)漂白粉将在U形管中产生,其反应的化学方程式是______。
(3)此实验结果所得Ca(ClO)2产率太低。经分析并查阅资料发现主要原因是在U形管中存在两个副反应:
①温度较高时氯气与消石灰反应生成了Ca(ClO3)2,为避免此副反应的发生,可采取的措施是______,有同学测出了反应后溶液中ClO-、ClO两种离子的物质的量(n)与反应时间(t)的关系曲线,粗略表示为如图2(不考虑氯气和水的反应)。
a.图2中曲线Ⅰ表示______的物质的量随反应时间变化的关系。
b.取含有0.25molCa(OH)2的石灰乳,以较大的速率通入足量氯气,反应后测得产物中Cl-的物质的量为0.37mol,则产物中=______。
②试判断另一个副反应是______(写出此反应的化学方程式)。
(4)该学生还将制得的氯气和二氧化硫同时通入品红溶液中,发现混合气体漂白能力下降。经分析发现主要原因是氯气和二氧化硫在水溶液中发生了氧化还原反应。为了定量测定该反应生成SO的质量,该学生将过量氯气和二氧化硫同时通入水中,将反应后的溶液用容量瓶配制成250mL后,从中取出25mL进行如下实验:
| 操作 | 现象 | 目的/结论 |
① | 往25mL溶液中滴加过量amol·L-1BaCl2溶液V1mL | 稍显浑浊 | 目的:沉淀SO |
② | 继续滴加过量bmol·L-1K2CrO4溶液V2mL | 产生黄色沉淀 | 目的:沉淀过量的Ba2+。 |
③ | 过滤洗涤,滴加少许指示剂于滤液中,用cmol·L-1FeSO4溶液滴定至终点,消耗FeSO4溶液V3mL |
| 结论:反应生成SO |
已知:CrO+Ba2+=BaCrO4↓(黄色)、CrO
+3Fe2++8H+=Cr3++3Fe3++4H2O
11、达喜是常用的中和胃酸的药物,其有效成分是含结晶水的铝镁碱式盐。取该碱式盐6.02g,向其中逐滴加入4.00mol·L-1的盐酸,当加入盐酸42.5mL时开始产生CO2,加入盐酸至45.0mL时恰好反应完全。
(1)计算该碱式盐样品中碳酸根与氢氧根的物质的量之比:__。
(2)若达喜中镁、铝元素的物质的量之比为3:1,则氢元素的质量分数为__。
12、硫酸铁铵[aFe2(SO4)3·b(NH4)2SO4·cH2O]广泛用于城镇生活饮用水、工业循环水的净化处理等。某化工厂以硫酸亚铁(含少量硝酸钙)和硫酸铵为原料,设计了如下工艺流程制取硫酸铁铵。
请回答下列问题:
(1)硫酸亚铁溶液加 H2SO4 酸化的主要目的是____________,滤渣 A的主要成分是______________。
(2)下列物质中最适合的氧化剂 B 是____________。
a.NaClO b.H2O2 c.KMnO4 d.K2Cr2O7
(3)操作甲、乙的名称分别是:甲_____________,乙_____________。
(4)上述流程中,有一处不严密,请指出并修改_____________。
(5)检验硫酸铁铵中NH4+的方法是_____________。
(6)称取 14.00 g 样品,将其溶于水配制成 100 mL 溶液,并分成两等份,向其中一份 中加入足量 NaOH 溶液,过滤洗涤得到 2.14 g 沉淀;向另一份溶液中加入 0.05 mol Ba(NO3)2 溶液,恰好完全反应。则该硫酸铁铵的化学式为_____________。
13、科学家对多种过渡金属元素进行深入的研究,在新能源、新材料研发,医疗等领域应用广泛。回答下列问题:
(1)铜元素位于周期表中____区,画出Fe3+离子能量最高的能级的电子排布图____。
(2)CO可以形成Ni(CO)4、Fe(CO)5等多种配合物,在提纯金属方面应用广泛。与CO互为等电子体的一种阴离子和一种单质分子的化学式分别为____、____;CO分子中σ键和π键的个数比为____,试比较C、O与N的第一电离能的大小____。
(3)PtCl2(NH3)2有如图两种平行四边形结构:
研究表明,图a分子用于抗癌药物,在图a中用箭头标出配位键____。解释分子b不溶于水的原因:____。其中配体NH3中心原子的杂化方式为____。
(4)铜和氧形成的一种离子化合物(氧的化合价为-2)是良好的半导体材料。晶胞结构如图所示:
铜离子的电荷数为____,其配位数为____,以晶胞参数为单位长度建立的坐标系可以表示晶胞中各原子的位置,称作原子分数坐标,例如图中a原子和b原子坐标分别为(0,0,0)、(,
,
),则c原子分数坐标为____,若晶体密度为dg/cm3,设NA为阿伏加德罗常数的值,则晶胞中阴阳离子最短距离为____nm(列出计算式即可)。