1、用图示装置及药品制备有关气体,其中能达到实验目的的是( )
选项 | A | B | C | D |
装置及药品 | ||||
实验目的 | 制H2S | 制氨气 | 制NO2 | 制氯气 |
A.A
B.B
C.C
D.D
2、由P、S、Cl、Ni等元素组成的新型材料有着广泛的用途,回答下列问题。
(1)基态Cl原子核外电子占有的原子轨道数为______个,P、S、Cl的第一电离能由大到小顺序为_______。
(2)PCl3分子中的中心原子杂化轨道类型是______,该分子构型为_______。
(3)PH4Cl的电子式为______,Ni与CO能形成配合物Ni(CO)4,该分子中π键与σ键个数比为________。
⑷已知MgO与NiO的晶体结构(如图1)相同,其中Mg2+和Ni2+的离子半径分别为66 Pm和 69 pm,则熔点:MgO___NiO(填“>”、“<”或“=”),理由是______。
(5)若NiO晶胞中离子坐标参数A为(0,0,0),B为(1,1,0),则C离子坐标参数为______。
(6)一定温度下,NiO晶体可以自发地分散并形成“单分子层”,可以认为O2-作密置单层排列, Ni2+填充其中(如图2),已知O2-的半径为a m,每平方米面积上分散的该晶体的质量为____g。(用a、NA表示)
3、在空气中泄露的二氧化硫,会被氧化而形成硫酸雾或硫酸盐气溶胶,污染环境。工业上常用溶液吸收、活性炭还原等方法处理二氧化硫,以减小对空气的污染。
(1)写出用溶液吸收
的离子方程式____________。
(2)钠原子核外有______种能量不同的电子。写出硫原子最外层电子的轨道表示式____________。
(3)比
稳定,请用分子结构的知识简述其理由。__________________
4、钛及其化合物被广泛应用于飞机、火箭、卫星、舰艇、医疗以及石油化工等领域。
(1)Ti的基态原子的电子排布式为________。
(2)已知TiC在碳化物中硬度最大,工业上一般在真空和高温(>1800℃)条件下用C还原TiO2制取TiC: TiO2+3CTiC+2CO↑。该反应中涉及的元素按电负性由大到小的顺序排列为_____________;根据所给信息,可知TiC是________晶体。
(3)钛的化合物TiCl4,熔点为-24℃,沸点为136.4℃,常温下是无色液体,可溶于甲苯和氯代烃。
①固态TiCl4属于________晶体,其空间构型为正四面体,则钛原子的杂化方式为__________。
②TiCl4遇水发生剧烈的非氧化还原反应,生成两种酸,反应的化学方程式为_________
③用锌还原TiCl4的盐酸溶液,经后续处理可制得绿色的配合物[TiCl(H2O)5]Cl2·H2O.该配合物中含有化学键的类型有_________、__________。
(4)钛的一种氧化物是优良的颜料,该氧化物的晶胞如右图所示:
该氧化物的化学式为________;在晶胞中Ti原子的配位数为_______,若晶胞边长为a nm,NA为阿伏伽德罗常数的数值,列式表示氧化钛晶体的密度:___________g/cm3。
5、氰化钠,白色结晶颗粒或粉末,易潮解,剧毒,水溶液显弱碱性,化学式为NaCN,熔点为563.1℃,是一种重要的化工原料,多用于化学合成,电镀冶金等方面。其制备工艺如下:
(1)制备过程的化学反应方程式为____________________________________。
(2)工厂中,氰化钠存储区应贴的标志为________(填选项字母)。
(3)已知NaCN中碳、氮原子均满足8电子稳定结构,其电子式为_____________。
(4)丙烯氨氧化法制丙烯腈的过程中有大量副产物HCN,HCN被NaOH溶液吸收,也是制备NaCN的一种重要方法。含等物质的量的NaCN和HCN的混合溶液,其pH>7,该溶液中下列关系式一定正确的是________(填选项字母)。
A.2c(Na+)=c(CN-) B.c(CN-)
C.c(H+)=c(OH-)-c(HCN) D.c(Na+)-c(CN-) =c(OH-)-c(H+)
已知25℃时,HCN的电离平衡常数Ka=4.9×10-10,则该温度下NaCN的水解平衡常数Kb=________(结果保留到小数点后一位)。
(5)泄露的含NaCN的溶液可用双氧水处理,生成一种常见的酸式盐和一种常见的碱性气体,化学方程式为__________________________________。
(6)某废水样品中主要含有CN-和Cl-,若用电解法除去废水中的CN-,装置如图所示,控制废水的pH范围在9~10,阳极产生的ClO-可将CN-氧化为N2和CO32-,阳极的电极反应式为________。 除去CN-的离子反应方程式为____________________________。
6、镍在金属羰基化合物(金属元素和CO中性分子形成的一类配合物)、金属储氢材料(能可逆地多次吸收、储存和释放H2的合金)等领域用途广泛。
(1)基态Ni原子核外电子排布式为__________________________。
(2)Ni(CO)4中镍元素的化合价为__________,写出与CO互为等电子体的带一个单位正电荷的阳离子为:_______。Ni(CO)4的一氯代物有2种,其空间构型为_______________ o
(3)一种储氢合金由镍与镧(La)组成,其晶胞结构如图所示,则该晶体的化学式为_____________
(4)下列反应常用来检验Ni2+,请写出另一产物的化学式:_______________。
与Ni2+配位的N原子有__________个,该配合物中存在的化学键有_________(填序号)。
A.共价键 B.离子键 C.配位键 D.金属键 E.氢键
(5)Ni与Fe的构型相同(体心立方堆积),Ni的摩尔质量为M g/mol,阿伏加德罗常数为NA,密度为a g/cm3Ni原子的半径为_________pm(金属小球刚性相切)
7、硝酸(HNO3)在生活、生产中有广泛的用途。工业上通常以氨气为原料来制取硝酸,其反应原理如下:4NH3+5O24NO+6H2O、4NO+3O2+2H2O→4HNO3
(1)比较HNO3中各组成元素的非金属性强弱___________。
(2)写出NH3的电子式___________,O原子最外层的轨道表示式___________。
(3)联合制碱法是把“合成氨法”和“氨碱法”联合在一起,你认为制硝酸能不能用这个方法,把“合成氨工业”和“硝酸工业”联合在一起,理由是___________。
8、碘是生命体中的必需元素,请根据如下有关碘及其化合物的性质,回答下列问题:
(1)实验室中制取少量碘可采用如下方法:KI+CuSO4→CuI↓+K2SO4+I2。此反应生成1 mol I2时转移的电子是________mol。工业生产中,可用智利硝石(含有NaIO3)为原料,与NaHSO3溶液反应生成碘,写出此反应的离子方程式:______________________________________________。
(2)单质碘与氟气反应可制得IF5,实验表明液态IF5具有一定的导电性,研究人员发现产生这一现象的可能原因在于IF5的自偶电离(类似于:2H2OH3O++OH-),电离生成的+1价阳离子为_____,-1价阴离子为________。
(3)将单质碘与铝屑置于管式电炉中,隔绝空气加热至500℃得到棕色片状固体(AlI3),此固体溶于Na2CO3溶液可产生白色沉淀和气体。请写出AlI3和Na2CO3溶液反应的离子方程式:______________。
(4)设计以下实验方案判断加碘食盐中碘的存在形式为I-、IO或两者同时存在。请对以下试验方案进行预测和分析。首先取试样加水溶解,分成三份试样:
①第一份试样加酸酸化,如果加淀粉溶液后试样溶液变蓝,说明试样中同时存在I-和IO,该过程反应的离子方程式为___________。
②第二份试样酸化后,加入淀粉溶液无变化,再加________溶液,溶液变蓝,说明试样中存在I-。
③第三份试样酸化后,如果直接使________试纸变蓝,说明试样存在IO离子。
9、铁及其化合物在工农业生产、环境保护等领域中有着重要的作用。
(1)硫酸铁铵[NH4Fe(SO4)2·12H2O]广泛用于城镇生活饮用水、工业循环水的净化处理等。写出硫酸铁铵溶液中离子浓度的大小顺序 。
(2)FeSO4/KMnO4工艺与单纯混凝剂[FeCl3、Fe2(SO4)3]相比,大大降低了污水处理后水的浑浊度,显著提高了对污水中有机物的去除率。二者的引入并未增加沉降后水中总铁和总锰浓度,反而使二者的浓度降低,原因是在此条件下(pH约为7)KMnO4可将水中Fe2+、Mn2+氧化为固相的+3价铁和+4价锰的化合物,进而通过沉淀、过滤等工艺将铁、锰除去。已知:Ksp(Fe(OH)3=4.0×10-38,则沉淀过滤后溶液中c(Fe3+)约为 mol·L-1。写出生成+4价固体锰化合物的反应的离子方程式 。
(3)新型纳米材料ZnFe2Ox,可用于除去工业废气中的某些氧化物。制取新材料和除去废气的转化关系如图:
用ZnFe2Ox除去SO2的过程中,氧化剂是 。(填化学式)
(4)工业上常采用如图所示电解装置,利用铁的化合物将气态废弃物中的硫化氢转化为可利用的硫。先通电电解,然后通入H2S时发生反应的离子方程式为:2[Fe(CN)6]3-+2CO+H2S=2[Fe(CN)6]4-+2HCO+S↓。电解时,阳极的电极反应式为 ;电解过程中阴极区溶液的pH (填“变大”、“变小”或“不变”)。
10、某兴趣小组的同学发现,将CuSO4溶液与Na2CO3溶液混合会产生蓝绿色沉淀。他们对沉淀的组成很感兴趣,决定采用实验的方法进行探究。
(1)(提出猜想)所得沉淀为一种盐或者一种碱,它们可能是___、___。
(查阅资料)无论是哪一种沉淀,受热均易分解(假设均不含结晶水)。
(2)(实验探究)
步骤1:将所得悬浊液过滤,先用蒸馏水洗涤,再用无水乙醇洗涤、风干。
步骤2:取一定量所得固体,用如图装置(夹持仪器未画出)进行定性实验,能证明沉淀成分的实验现象是___。
(问题讨论)
(3)检查上述虚线框内装置气密性的实验操作是:关闭K,___。
(4)步骤1中用无水乙醇再次洗涤的目的是___。若在上述装置B中盛放无水CaCl2,C中盛放Ba(OH)2溶液,还可测定所得沉淀的组成。
(5)C中盛放Ba(OH)2溶液,而不使用澄清石灰水的原因是___。
(6)若所取蓝绿色固体质量为27.1g,实验结束后,装置B的质量增加2.7g,C中产生沉淀的质量为19.7g,则该蓝绿色固体的化学式为___。
11、取1.77g镁铝合金投入到的盐酸中,合金完全溶解,放出氢气1.904L(已折算成标况)请计算:
(1)镁铝合金中镁的质量分数=______%(保留三位有效数字)
(2)上述溶液中继续滴加的NaOH溶液,得到沉淀3.10g。则V的最大值=______mL。(写出计算过程)
12、一种从废电池正极材料(含铝箔、LiCoO2、Fe2O3及少量不溶于酸碱的导电剂中回收各种金属的工艺流程如图:
已知:①黄钠铁矾晶体颗粒粗大,沉淀速度快,易于过滤。
②钴酸锂难溶于水,碳酸锂的溶解度随温度升高而降低。
③Ksp(CoC2O4)=6.3×10-8,Ksp[Co(OH)2]=6.3×10-4。
回答下列问题:
(1)为了提高“碱溶”效率,可以采取的措施是___(写出一条即可)。
(2)“浸取”时有无色气体产生,发生反应的离子方程式为___。
(3)“沉钴”时采用饱和草酸铵溶液将钴元素转化为CoC2O4,与草酸钠溶液相比效果更好,原因是___。
(4)“沉锂”后得到碳酸锂固体的实验操作为___。
(5)“沉铁”时所得黄钠铁矾的化学式可表示为NaxFey(SO4)m(OH)n。采用滴定法测定黄钠铁矾样品的组成,实验步骤如下:
I.称取4.850g样品,加盐酸完全溶解后,配成100.00mL溶液。
II.量取25.00mL溶液,加入足量的KI,用0.2500mol·L-1Na2S2O3溶液进行滴定至终点(I2+2Na2S2O3=2NaI+Na2S4O6),消耗30.00mLNa2S2O3溶液。
III.另取25.00mL溶液,加入足量BaCl2溶液,充分反应后过滤、洗涤、干燥,得到沉淀1.165g。
用Na2S2O3溶液进行滴定时,使用的指示剂为___;黄钠铁矾的化学式为___。
(6)高能锂离子电池的总反应为2Li+FeS=Fe+Li2S。用该电池作电源电解含镍酸性废水回收Ni的装置如图(图中X、Y为电极,LiPF6·SO(CH3)2为电解质)。
①电极X的反应材料是___(填化学式);中间隔室b可以得到的主要物质Z是___ (填化式)。
②电解总反应的离子方程式为___。
已知F=96500C/mol,Q=It=n(e-)·F。若电池工作tmin,维持电流强度为IA,理论回收Ni___g(写出计算表达式即可)。
13、合理处理金属垃圾既可以保护环境又可以节约资源。利用废旧镀锡铜线制备胆矾并回收锡的流程如下:
已知Sn2+容易水解。
回答下列问题:
(1)加快“脱锡”速率的措施有_______(写出一点)。“操作I” 包含_______、_______、过滤、洗涤、干燥。
(2)“脱锡”过程中加入少量稀硫酸调控溶液pH,其目的是_______;硫酸铜浓度与脱锡率的关系如图所示,当浓度大于120g·L-1时,脱锡率下降的原因_______。
(3)“脱锡液”中含有的离子主要为Cu2+、Sn2+、H+、SO,以石墨为电极,通过控制溶液pH、电解时电压,可以依次回收铜、锡。电解时阳极反应式为_______; 当阴极出现_______的现象时,说明电解回收锡结束。
(4)“脱锡渣”溶于硫酸的离子方程式为_______。
(5)称量纯净的胆矾2.50g进行热重分析,实验测得胆矾的热重曲线如图所示。则120℃时所得固体的化学式为_______。