1、《孙子算经》中有一道题,原文是:今有三人共车,二车空;二人共车,九人步,问人与车各几何?译文为:今有若干人乘车,每3人共乘一车,最终剩余2辆车;若每2人共乘一车,则最终剩余9个人无车可乘,问共有多少人,多少辆车?设共有x人,则可列方程为( )
A.
B.
C.
D.
2、如果等腰三角形的一个外角等于,则它的顶角是( ).
A. B.
或
C.
D.
或
3、山西省统计局、国家统计局山西调查总队联合召开新闻发布会,前三季度全省经济运行总体平稳,初步核算,前三季度全省地区生产总值为12688.4亿元.数据12688.4亿用科学记数法可表示为( )
A. B.
C.
D.
4、植树时,为了使同一行树坑在一条直线上,只需定出两个树坑的位置,其中的数学道理是( )
A.两点之间线段最短
B.两点之间直线最短
C.两点确定一条射线
D.两点确定一条直线
5、下列命题中为真命题的是( )
A.相等的角是对顶角 B.一个角的补角大于这个角
C.如果,则
D.两直线平行,内错角相等
6、若分式的值为零,则x的值是( )
A.2
B.﹣2
C.±2
D.0
7、使分式有意义的条件是( )
A.x=±3
B.x≠±3
C.x≠﹣3
D.x≠3
8、下列各组数中,不是具有相反意义的量的是( )
A.收入200元与支出20元
B.上升和下降
C.增大2岁与减少2升
D.超过与不足
9、下列各数:﹣8,,
,0.66666…,0,9.8181181118…(每两个8之间1的个数逐渐增加1),0.112134,其中有理数有( )
A.6个
B.5个
C.4个
D.3个
10、实数a,b在数轴上对应的点的位置如图所示,计算的结果为( )
A. B.
C.
D.
11、如图,三角形纸片中,
,
,
,沿过点
的直线折叠这个三角形,使顶点
落在
边上的点
处,折痕为
,则
的周长等于______.
12、往返于甲、乙两地的火车,途中停靠三个站,则至多要准备 ___种车票.
13、在平面直角坐标系中,点A(-2,-3)关于坐标原点O中心对称的点的坐标为____________
14、如图,直线与坐标轴相交于点
、点
,
,且
,双曲线
过点
,则
_____.
15、如果∠与∠的两边分别平行,∠比∠的3倍少36°,则∠的度数是_________.
16、一个矩形的面积为96000000cm2,第一次截去它的,第二次截去剩下的
,如此截下去,第六次截去后剩余图形的面积为_____cm2,用科学记数法表示剩余图形的面积为_____cm2.
17、如图,在阳光下的电线杆AB落在地上的影子BD长3米,落在墙上的影子CD的高为2米,同一时刻,竖起一根1米高的竹竿MN,其影长MF为1.5米,求电线杆的高度.
18、先化简,再求值:
(x+2y)(x﹣2y)+(x+2y)2﹣x(2y﹣x),其中x=,y=2.
19、甲、乙、丙、丁四个人玩“击鼓传花”的游戏,游戏规则是第一次由甲将花随机传给乙、丙、丁三人中的某一人,以后的每一次都是由接到花的人随机传给其他三人中的某一人
(1)甲第一次传花时,恰好传给乙的概率是_____
(2)请用画树状图或列表的方法求经过两次传花后,花恰好回到甲手中的概率
20、回答问题:
(1)已知∠AOB的度数为54°,在∠AOB的内部有一条射线OC,满足∠AOC=∠COB,在∠AOB所在平面上另有一条射线OD,满足∠BOD=
∠AOC,如图1和图2所示,求∠COD的度数.
(2)已知线段AB长为12cm,点C是线段AB上一点,满足AC=CB,点D是直线AB上满足BD=
AC.请画出示意图,求出线段CD的长.
21、已知y=1-2x,
(1)当x为何值时,;
(2)当y为何值时,x≤-1.
22、(1);(2)
23、甲、乙两车从地到480千米的
地,甲车比乙车晚出发2小时,乙车途中因故停车检修,图中线段
、折线
分别表示甲、乙两车所行路程
(千米)与时间
(小时)之间的函数图像,请根据图像所提供的信息,解决如下问题:
(1)甲车的速度是______千米/小时,乙车停车检修后再出发的速度是______千米/小时.
(2)求出乙车停车检修后再出发后(线段)的函数关系式
(3)点的坐标是______.
(4)在乙车出发4.5小时至到达目的地这段时间内,当______时,两车相距60千米.
24、【探究与证明】成语“以不变应万变”中蕴含着某种数学原理.
【动手操作】如图1,是正方形
的对角线,点E是
上的一个动点,过点E和B作等腰直角
,其中
,
,
与射线
交于点P.
请完成:
(1)试判断图1中的和
的数量关系;
(2)当点P在线段上时,求证:
.
【类比操作】如图2,当点P在线段的延长线上时.
(3)是否还成立?请判断并证明你的结论.